Excellence in Research and Innovation for Humanity
} , ?>
@article{(International Science Index):http://waset.org/publications/10006851,
  title    = {Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon},
  author    = {Alex Ellery},
  country   = {Canada},
  institution={Carleton University},
  abstract  = {Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering.
},
    journal   = {International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering},  volume    = {10},
  number    = {2},
  year      = {2016},
  pages     = {278 - 285},
  ee        = {http://waset.org/publications/10006851},
  url       = {http://waset.org/Publications?p=110},
  bibsource = {http://waset.org/Publications},
  issn      = {PISSN:2010-376X, EISSN:2010-3778},
  publisher = {World Academy of Science, Engineering and Technology},
  index     = {International Science Index 110, 2016},
}