Open Science Research Excellence
%0 Journal Article
%A Ramaswamy Palaniappan and  Nai-Jen Huan
%D 2007 
%J  International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 12, 2007
%T Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification
%V 12
%X Classification of electroencephalogram (EEG) signals
extracted during mental tasks is a technique that is actively pursued
for Brain Computer Interfaces (BCI) designs. In this paper, we
compared the classification performances of univariateautoregressive
(AR) and multivariate autoregressive (MAR) models
for representing EEG signals that were extracted during different
mental tasks. Multilayer Perceptron (MLP) neural network (NN)
trained by the backpropagation (BP) algorithm was used to classify
these features into the different categories representing the mental
tasks. Classification performances were also compared across
different mental task combinations and 2 sets of hidden units (HU): 2
to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different
mental tasks from 4 subjects were used in the experimental study and
combinations of 2 different mental tasks were studied for each
subject. Three different feature extraction methods with 6th order
were used to extract features from these EEG signals: AR
coefficients computed with Burg-s algorithm (ARBG), AR
coefficients computed with stepwise least square algorithm (ARLS)
and MAR coefficients computed with stepwise least square
algorithm. The best results were obtained with 20 to 100 HU using
ARBG. It is concluded that i) it is important to choose the suitable
mental tasks for different individuals for a successful BCI design, ii)
higher HU are more suitable and iii) ARBG is the most suitable
feature extraction method.
%P 636 - 641