Open Science Research Excellence
%0 Journal Article
%A M. R. Nematollahi
%D 2008 
%J  International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 17, 2008
%T Evaluation of Exerting Force on the Heating Surface Due to Bubble Ebullition in Subcooled Flow Boiling
%U http://waset.org/publications/11219
%V 17
%X Vibration characteristics of subcooled flow boiling on
thin and long structures such as a heating rod were recently
investigated by the author. The results show that the intensity of the
subcooled boiling-induced vibration (SBIV) was influenced strongly
by the conditions of the subcooling temperature, linear power density
and flow velocity. Implosive bubble formation and collapse are the
main nature of subcooled boiling, and their behaviors are the only
sources to originate from SBIV. Therefore, in order to explain the
phenomenon of SBIV, it is essential to obtain reliable information
about bubble behavior in subcooled boiling conditions. This was
investigated at different conditions of coolant subcooling
temperatures of 25 to 75°C, coolant flow velocities of 0.16 to
0.53m/s, and linear power densities of 100 to 600 W/cm. High speed
photography at 13,500 frames per second was performed at these
conditions. The results show that even at the highest subcooling
condition, the absolute majority of bubbles collapse very close to the
surface after detaching from the heating surface. Based on these
observations, a simple model of surface tension and momentum
change is introduced to offer a rough quantitative estimate of the
force exerted on the heating surface during the bubble ebullition. The
formation of a typical bubble in subcooled boiling is predicted to
exert an excitation force in the order of 10-4 N.
%P 676 - 683