Open Science Research Excellence
%0 Journal Article
%A Vahid R. Asghari and  Mehrdad Ardebilipour
%D 2007 
%J  International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 7, 2007
%T Spread Spectrum Code Estimationby Particle Swarm Algorithm
%V 7
%X In the context of spectrum surveillance, a new method
to recover the code of spread spectrum signal is presented, while the
receiver has no knowledge of the transmitter-s spreading sequence. In
our previous paper, we used Genetic algorithm (GA), to recover
spreading code. Although genetic algorithms (GAs) are well known
for their robustness in solving complex optimization problems, but
nonetheless, by increasing the length of the code, we will often lead
to an unacceptable slow convergence speed. To solve this problem we
introduce Particle Swarm Optimization (PSO) into code estimation in
spread spectrum communication system. In searching process for
code estimation, the PSO algorithm has the merits of rapid
convergence to the global optimum, without being trapped in local
suboptimum, and good robustness to noise. In this paper we describe
how to implement PSO as a component of a searching algorithm in
code estimation. Swarm intelligence boasts a number of advantages
due to the use of mobile agents. Some of them are: Scalability, Fault
tolerance, Adaptation, Speed, Modularity, Autonomy, and
Parallelism. These properties make swarm intelligence very attractive
for spread spectrum code estimation. They also make swarm
intelligence suitable for a variety of other kinds of channels. Our
results compare between swarm-based algorithms and Genetic
algorithms, and also show PSO algorithm performance in code
estimation process.
%P 1075 - 1078