Open Science Research Excellence
%0 Journal Article
%A Deepak Kukkar and  Inderpreet Kaur and  Jagtar Singh and  Lalit M Bharadwaj
%D 2011 
%J  International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 52, 2011
%T Study of Encapsulation of Quantum Dots in Polystyrene and Poly (E-Caprolactone)Microreactors Prepared by Microvolcanic Eruption of Freeze Dried Microspheres
%V 52
%X Polymeric microreactors have emerged as a new
generation of carriers that hold tremendous promise in the areas of
cancer therapy, controlled delivery of drugs, for removal of
pollutants etc. Present work reports a simple and convenient
methodology for synthesis of polystyrene and poly caprolactone
microreactors. An aqueous suspension of carboxylated (1μm)
polystyrene latex particles was mixed with toluene solution followed
by freezing with liquid nitrogen. Freezed particles were incubated at
-20°C and characterized for formation of voids on the surface of
polymer microspheres by Field Emission Scanning Electron
Microscope. The hollow particles were then overnight incubated at
40ºC with unfunctionalized quantum dots (QDs) in 5:1 ratio. QDs
Encapsulated polystyrene microcapsules were characterized by
fluorescence microscopy.
Likewise Poly ε-caprolactone microreactors were prepared by
micro-volcanic rupture of freeze dried microspheres synthesized
using emulsification of polymer with aqueous Poly vinyl alcohol and
freezed with liquid nitrogen. Microreactors were examined with Field
Emission Scanning Electron Microscope for size and morphology.
Current study is an attempt to create hollow polymer particles which
can be employed for microencapsulation of nanoparticles and drug
%P 377 - 379