Open Science Research Excellence
%0 Journal Article
%A Siddhartha Bhattacharyya and  Paramartha Dutta and  Ujjwal Maulik and  Prashanta Kumar Nandi
%D 2008 
%J  International Journal of Computer, Electrical, Automation, Control and Information Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 16, 2008
%T A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding
%U http://waset.org/publications/13151
%V 16
%X A multilayer self organizing neural neural network
(MLSONN) architecture for binary object extraction, guided by a beta
activation function and characterized by backpropagation of errors
estimated from the linear indices of fuzziness of the network output
states, is discussed. Since the MLSONN architecture is designed to
operate in a single point fixed/uniform thresholding scenario, it does
not take into cognizance the heterogeneity of image information in
the extraction process. The performance of the MLSONN architecture
with representative values of the threshold parameters of the beta
activation function employed is also studied. A three layer bidirectional
self organizing neural network (BDSONN) architecture
comprising fully connected neurons, for the extraction of objects from
a noisy background and capable of incorporating the underlying image
context heterogeneity through variable and adaptive thresholding,
is proposed in this article. The input layer of the network architecture
represents the fuzzy membership information of the image scene to
be extracted. The second layer (the intermediate layer) and the final
layer (the output layer) of the network architecture deal with the self
supervised object extraction task by bi-directional propagation of the
network states. Each layer except the output layer is connected to the
next layer following a neighborhood based topology. The output layer
neurons are in turn, connected to the intermediate layer following
similar topology, thus forming a counter-propagating architecture
with the intermediate layer. The novelty of the proposed architecture
is that the assignment/updating of the inter-layer connection weights
are done using the relative fuzzy membership values at the constituent
neurons in the different network layers. Another interesting feature
of the network lies in the fact that the processing capabilities of
the intermediate and the output layer neurons are guided by a beta
activation function, which uses image context sensitive adaptive
thresholding arising out of the fuzzy cardinality estimates of the
different network neighborhood fuzzy subsets, rather than resorting to
fixed and single point thresholding. An application of the proposed
architecture for object extraction is demonstrated using a synthetic
and a real life image. The extraction efficiency of the proposed
network architecture is evaluated by a proposed system transfer index
characteristic of the network.
%P 1309 - 1329