Open Science Research Excellence
%0 Journal Article
%A Sumathi Poobal and  G. Ravindran
%D 2007 
%J  International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 12, 2007
%T Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities
%V 12
%X Image compression is one of the most important
applications Digital Image Processing. Advanced medical imaging
requires storage of large quantities of digitized clinical data. Due to
the constrained bandwidth and storage capacity, however, a medical
image must be compressed before transmission and storage. There
are two types of compression methods, lossless and lossy. In Lossless
compression method the original image is retrieved without any
distortion. In lossy compression method, the reconstructed images
contain some distortion. Direct Cosine Transform (DCT) and Fractal
Image Compression (FIC) are types of lossy compression methods.
This work shows that lossy compression methods can be chosen for
medical image compression without significant degradation of the
image quality. In this work DCT and Fractal Compression using
Partitioned Iterated Function Systems (PIFS) are applied on different
modalities of images like CT Scan, Ultrasound, Angiogram, X-ray
and mammogram. Approximately 20 images are considered in each
modality and the average values of compression ratio and Peak
Signal to Noise Ratio (PSNR) are computed and studied. The quality
of the reconstructed image is arrived by the PSNR values. Based on
the results it can be concluded that the DCT has higher PSNR values
and FIC has higher compression ratio. Hence in medical image
compression, DCT can be used wherever picture quality is preferred
and FIC is used wherever compression of images for storage and
transmission is the priority, without loosing picture quality
%P 1749 - 1754