Open Science Research Excellence
%0 Journal Article
%A Sarabjeet Kaur Kochhar
%D 2007 
%J  International Journal of Computer, Electrical, Automation, Control and Information Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 11, 2007
%T SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data
%V 11
%X With a surge of stream processing applications novel
techniques are required for generation and analysis of association
rules in streams. The traditional rule mining solutions cannot handle
streams because they generally require multiple passes over the data
and do not guarantee the results in a predictable, small time. Though
researchers have been proposing algorithms for generation of rules
from streams, there has not been much focus on their analysis.
We propose Association rule profiling, a user centric process for
analyzing association rules and attaching suitable profiles to them
depending on their changing frequency behavior over a previous
snapshot of time in a data stream.
Association rule profiles provide insights into the changing nature
of associations and can be used to characterize the associations. We
discuss importance of characteristics such as predictability of
linkages present in the data and propose metric to quantify it. We
also show how association rule profiles can aid in generation of user
specific, more understandable and actionable rules.
The framework is implemented as SUPAR: System for Usercentric
Profiling of Association Rules in streaming data. The
proposed system offers following capabilities:
i) Continuous monitoring of frequency of streaming item-sets
and detection of significant changes therein for association rule
ii) Computation of metrics for quantifying predictability of
associations present in the data.
iii) User-centric control of the characterization process: user
can control the framework through a) constraint specification and b)
non-interesting rule elimination.
%P 3652 - 3656