Excellence in Research and Innovation for Humanity
%0 Journal Article
%A Randy Gomez and  Keisuke Nakamura and  Kazuhiro Nakadai
%D 2013 
%J  International Journal of Computer, Electrical, Automation, Control and Information Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 79, 2013
%T Automatic Distance Compensation for Robust Voice-based Human-Computer Interaction
%U http://waset.org/publications/16406
%V 79
%X Distant-talking voice-based HCI system suffers from
performance degradation due to mismatch between the acoustic
speech (runtime) and the acoustic model (training). Mismatch is
caused by the change in the power of the speech signal as observed at
the microphones. This change is greatly influenced by the change in
distance, affecting speech dynamics inside the room before reaching
the microphones. Moreover, as the speech signal is reflected, its
acoustical characteristic is also altered by the room properties. In
general, power mismatch due to distance is a complex problem. This
paper presents a novel approach in dealing with distance-induced
mismatch by intelligently sensing instantaneous voice power variation
and compensating model parameters. First, the distant-talking speech
signal is processed through microphone array processing, and the
corresponding distance information is extracted. Distance-sensitive
Gaussian Mixture Models (GMMs), pre-trained to capture both
speech power and room property are used to predict the optimal
distance of the speech source. Consequently, pre-computed statistic
priors corresponding to the optimal distance is selected to correct
the statistics of the generic model which was frozen during training.
Thus, model combinatorics are post-conditioned to match the power
of instantaneous speech acoustics at runtime. This results to an
improved likelihood in predicting the correct speech command at
farther distances. We experiment using real data recorded inside two
rooms. Experimental evaluation shows voice recognition performance
using our method is more robust to the change in distance compared
to the conventional approach. In our experiment, under the most
acoustically challenging environment (i.e., Room 2: 2.5 meters), our
method achieved 24.2% improvement in recognition performance
against the best-performing conventional method.

%P 974 - 983