Ross Jeffry and Muhammad N. S. Hadi The Effect of Confinement Shapes on OverReinforced HSC Beams
71 - 78
2008
2
4
International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering http://waset.org/publications/1842
http://waset.org/publications/16
World Academy of Science, Engineering and Technology
High strength concrete (HSC) provides high strength
but lower ductility than normal strength concrete. This low ductility
limits the benefit of using HSC in building safe structures. On the
other hand, when designing reinforced concrete beams, designers
have to limit the amount of tensile reinforcement to prevent the
brittle failure of concrete. Therefore the full potential of the use of
steel reinforcement can not be achieved. This paper presents the idea
of confining concrete in the compression zone so that the HSC will
be in a state of triaxial compression, which leads to improvements in
strength and ductility. Five beams made of HSC were cast and tested.
The cross section of the beams was 200×300 mm, with a length of 4
m and a clear span of 3.6 m subjected to fourpoint loading, with
emphasis placed on the midspan deflection. The first beam served as
a reference beam. The remaining beams had different tensile
reinforcement and the confinement shapes were changed to gauge
their effectiveness in improving the strength and ductility of the
beams. The compressive strength of the concrete was 85 MPa and the
tensile strength of the steel was 500 MPa and for the stirrups and
helixes was 250 MPa. Results of testing the five beams proved that
placing helixes with different diameters as a variable parameter in the
compression zone of reinforced concrete beams improve their
strength and ductility.
International Science Index 16, 2008