Open Science Research Excellence
%0 Journal Article
%A Narasimham Challa and  Jayaram Pradhan
%D 2007 
%J  International Journal of Computer, Electrical, Automation, Control and Information Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 11, 2007
%T GridNtru: High Performance PKCS
%U http://waset.org/publications/3895
%V 11
%X Cryptographic algorithms play a crucial role in the
information society by providing protection from unauthorized
access to sensitive data. It is clear that information technology will
become increasingly pervasive, Hence we can expect the emergence
of ubiquitous or pervasive computing, ambient intelligence. These
new environments and applications will present new security
challenges, and there is no doubt that cryptographic algorithms and
protocols will form a part of the solution. The efficiency of a public
key cryptosystem is mainly measured in computational overheads,
key size and bandwidth. In particular the RSA algorithm is used in
many applications for providing the security. Although the security
of RSA is beyond doubt, the evolution in computing power has
caused a growth in the necessary key length. The fact that most chips
on smart cards can-t process key extending 1024 bit shows that there
is need for alternative. NTRU is such an alternative and it is a
collection of mathematical algorithm based on manipulating lists of
very small integers and polynomials. This allows NTRU to high
speeds with the use of minimal computing power. NTRU (Nth degree
Truncated Polynomial Ring Unit) is the first secure public key
cryptosystem not based on factorization or discrete logarithm
problem. This means that given sufficient computational resources
and time, an adversary, should not be able to break the key. The
multi-party communication and requirement of optimal resource
utilization necessitated the need for the present day demand of
applications that need security enforcement technique .and can be
enhanced with high-end computing. This has promoted us to develop
high-performance NTRU schemes using approaches such as the use
of high-end computing hardware. Peer-to-peer (P2P) or enterprise
grids are proven as one of the approaches for developing high-end
computing systems. By utilizing them one can improve the
performance of NTRU through parallel execution. In this paper we
propose and develop an application for NTRU using enterprise grid
middleware called Alchemi. An analysis and comparison of its
performance for various text files is presented.
%P 3469 - 3472