Open Science Research Excellence
%0 Journal Article
%A Deepti Tamrakar and  Pritee Khanna
%D 2011 
%J  International Journal of Computer, Electrical, Automation, Control and Information Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 60, 2011
%T Palmprint Recognition by Wavelet Transform with Competitive Index and PCA
%U http://waset.org/publications/5291
%V 60
%X This manuscript presents, palmprint recognition by
combining different texture extraction approaches with high accuracy.
The Region of Interest (ROI) is decomposed into different frequencytime
sub-bands by wavelet transform up-to two levels and only the
approximate image of two levels is selected, which is known as
Approximate Image ROI (AIROI). This AIROI has information of
principal lines of the palm. The Competitive Index is used as the
features of the palmprint, in which six Gabor filters of different
orientations convolve with the palmprint image to extract the orientation
information from the image. The winner-take-all strategy
is used to select dominant orientation for each pixel, which is
known as Competitive Index. Further, PCA is applied to select highly
uncorrelated Competitive Index features, to reduce the dimensions of
the feature vector, and to project the features on Eigen space. The
similarity of two palmprints is measured by the Euclidean distance
metrics. The algorithm is tested on Hong Kong PolyU palmprint
database. Different AIROI of different wavelet filter families are also
tested with the Competitive Index and PCA. AIROI of db7 wavelet
filter achievs Equal Error Rate (EER) of 0.0152% and Genuine
Acceptance Rate (GAR) of 99.67% on the palm database of Hong
Kong PolyU.
%P 1621 - 1625