Open Science Research Excellence
%0 Journal Article
%A Yongxin Yuan
%D 2010 
%J  International Journal of Mathematical and Computational Sciences
%B World Academy of Science, Engineering and Technology
%I International Science Index 43, 2010
%T Generalized Inverse Eigenvalue Problems for Symmetric Arrow-head Matrices
%U http://waset.org/publications/6781
%V 43
%X In this paper, we first give the representation of the general solution of the following inverse eigenvalue problem (IEP): Given X ∈ Rn×p and a diagonal matrix Λ ∈ Rp×p, find nontrivial real-valued symmetric arrow-head matrices A and B such that AXΛ = BX. We then consider an optimal approximation problem: Given real-valued symmetric arrow-head matrices A, ˜ B˜ ∈ Rn×n, find (A, ˆ Bˆ) ∈ SE such that Aˆ − A˜2 + Bˆ − B˜2 = min(A,B)∈SE (A−A˜2 +B −B˜2), where SE is the solution set of IEP. We show that the optimal approximation solution (A, ˆ Bˆ) is unique and derive an explicit formula for it.

%P 905 - 908