Open Science Research Excellence
%0 Journal Article
%A J. P. Dubois and  O. M. Abdul-Latif
%D 2007 
%J  International Journal of Computer, Electrical, Automation, Control and Information Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 12, 2007
%T SVM-Based Detection of SAR Images in Partially Developed Speckle Noise
%V 12
%X Support Vector Machine (SVM) is a statistical
learning tool that was initially developed by Vapnik in 1979 and later
developed to a more complex concept of structural risk minimization
(SRM). SVM is playing an increasing role in applications to
detection problems in various engineering problems, notably in
statistical signal processing, pattern recognition, image analysis, and
communication systems. In this paper, SVM was applied to the
detection of SAR (synthetic aperture radar) images in the presence of
partially developed speckle noise. The simulation was done for single
look and multi-look speckle models to give a complete overlook and
insight to the new proposed model of the SVM-based detector. The
structure of the SVM was derived and applied to real SAR images
and its performance in terms of the mean square error (MSE) metric
was calculated. We showed that the SVM-detected SAR images have
a very low MSE and are of good quality. The quality of the
processed speckled images improved for the multi-look model.
Furthermore, the contrast of the SVM detected images was higher
than that of the original non-noisy images, indicating that the SVM
approach increased the distance between the pixel reflectivity levels
(the detection hypotheses) in the original images.
%P 3984 - 3988