Open Science Research Excellence
%0 Journal Article
%A Seok Hong Min and  Jung Ho Moon and  Woo Young Jung and  Tae Kwon Ha
%D 2013 
%J  International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering
%B World Academy of Science, Engineering and Technology
%I International Science Index 73, 2013
%T Hot Workability of High Strength Low Alloy Steels
%V 73
%X The hot deformation behavior of high strength low
alloy (HSLA) steels with different chemical compositions under hot
working conditions in the temperature range of 900 to 1100℃ and
strain rate range from 0.1 to 10 s-1 has been studied by performing a
series of hot compression tests. The dynamic materials model has been
employed for developing the processing maps, which show variation
of the efficiency of power dissipation with temperature and strain rate.
Also the Kumar-s model has been used for developing the instability
map, which shows variation of the instability for plastic deformation
with temperature and strain rate. The efficiency of power dissipation
increased with decreasing strain rate and increasing temperature in the
steel with higher Cr and Ti content. High efficiency of power
dissipation over 20 % was obtained at a finite strain level of 0.1 under
the conditions of strain rate lower than 1 s-1 and temperature higher
than 1050 ℃ . Plastic instability was expected in the regime of
temperatures lower than 1000 ℃ and strain rate lower than 0.3 s-1. Steel
with lower Cr and Ti contents showed high efficiency of power
dissipation at higher strain rate and lower temperature conditions.
%P 20 - 24