Open Science Research Excellence
@article{(International Science Index):,
  title    = {Clarification of Synthetic Juice through Spiral Wound Ultrafiltration Module at Turbulent Flow Region and Cleaning Study},
  author    = {Vijay Singh and  Chandan Das},
  country   = {},
  abstract  = {Synthetic juice clarification was done through spiral
wound ultrafiltration (UF) membrane module. Synthetic juice was
clarified at two different operating conditions, such as, with and
without permeates recycle at turbulent flow regime. The performance
of spiral wound ultrafiltration membrane was analyzed during
clarification of synthetic juice. Synthetic juice was the mixture of
deionized water, sucrose and pectin molecule. The operating
conditions are: feed flowrate of 10 lpm, pressure drop of 413.7 kPa
and Reynolds no of 5000. Permeate sample was analyzed in terms of
volume reduction factor (VRF), viscosity (Pa.s), ⁰Brix, TDS (mg/l),
electrical conductivity (μS) and turbidity (NTU). It was observe that
the permeate flux declined with operating time for both conditions of
with and without permeate recycle due to increase of concentration
polarization and increase of gel layer on membrane surface. For
without permeate recycle, the membrane fouling rate was faster
compared to with permeate recycle. For without permeate recycle,
the VRF rose up to 5 and for with recycle permeate the VRF is 1.9.
The VRF is higher due to adsorption of solute (pectin) molecule on
membrane surface and resulting permeateflux declined with VRF.
With permeate recycle, quality was within acceptable limit. Fouled
membrane was cleaned by applying different processes (e.g.,
deionized water, SDS and EDTA solution). Membrane cleaning was
analyzed in terms of permeability recovery.},
    journal   = {International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering},  volume    = {7},
  number    = {1},
  year      = {2013},
  pages     = {47 - 51},
  ee        = {},
  url       = {},
  bibsource = {},
  issn      = {eISSN:1307-6892},
  publisher = {World Academy of Science, Engineering and Technology},
  index     = {International Science Index 73, 2013},