Sometimes the amount of time available for testing could be considerably less than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative aimed at forcing components to fail by testing them at much higher-than-intended application conditions. These models are known as acceleration models. One possible way to translate test results obtained under accelerated conditions to normal using conditions could be through the application of the “Maxwell Distribution Law.” In this paper we will apply a combined approach of a sequential life testing and an accelerated life testing to a low alloy high-strength steel component used in the construction of overpasses in Brazil. The underlying sampling distribution will be three-parameter Inverse Weibull model. To estimate the three parameters of the Inverse Weibull model we will use a maximum likelihood approach for censored failure data. We will be assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under normal conditions for the underlying Inverse Weibull model we will apply to the expected normal failure times a sequential life testing using a truncation mechanism. An example will illustrate the application of this procedure.<\/p>\r\n", "references": null, "publisher": "World Academy of Science, Engineering and Technology", "index": "International Science Index 83, 2013" }