Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29210

Select areas to restrict search in scientific publication database:
Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites
This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied.
Digital Object Identifier (DOI):


[1] Ray, M. C., Bhattacharya, R. and Samanta, B. (1993), “Exact Solutions for Static Analysis of Intelligent Structures”, AIAA Journal, Vol. 31, pp.1684-1691.
[2] Reddy, J. N. (1999), “On laminate composite plates with integrated sensors and actuators”, Engineering Structures, Vol.21, No.7, pp.568–593.
[3] Baz, A. and Ro, J. (1996), “Vibration control of plates with active constrained layer damping”, Smart Materials and Structures, Vol. 5, pp.272–280.
[4] Ray, M. C., Oh, J. and Baz, A. (2001), “Active constrained layer damping of thin cylindrical shells”, Journal of Sound and Vibration, Vol.240, No.5, pp. 921–935.
[5] Kattimani, S.C. and Ray, M. C., (2014a), “Active control of large amplitude vibrations of smart Magneto-electro-elastic doubly curved shells”, International Journal of Mechanics and Materials in Design, DOI 10.1007/s10999-014-9252-3.
[6] Kattimani, S.C. and Ray, M. C., (2014b), “Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates”, Composite Structures, Vol. 114, pp. 51-63.
[7] Kattimani S.C. and Ray M.C. (2015), “Control of geometrically nonlinear vibrations of functionally graded Magneto-electro-elastic plates”, International Journal of Mechanical Sciences, Vol. 99, pp.154-167.
[8] Baz, A. (1998), “Robust control of active constrained layer damping”, Journal of Sound and Vibration, Vol. 211, No.3, pp.467-480.
[9] Ray, M. C. and Mallik, N. (2004), “Active control of laminated composite beams using a piezoelectric fiber reinforced composite layer”, Smart Materials and Structures, Vol.13, No.1, pp.146–152.
[10] Ray, M. C. and Pradhan, A. K. (2006), Performance of vertically reinforced 1–3 piezoelectric composites for active damping of smart structures”, Smart Materials and Structures, Vol.15, No.1, pp. 631–641.
[11] Pan, E. and Heyliger, P. R. (2002), “Free vibrations of simply supported and multilayered magneto-electro-elastic plates”, Journal of Sound and Vibration. Vol.252, No.3, pp.429-442.
[12] Ramirez, F., Heyliger, P. R. and Pan, E. (2006), “Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates”, Mechanics of Advanced Materials and Structures, Vol. 13, pp. 249–266.
[13] Buchanan, G. R. (2004), “Layered versus multiphase magneto-electro-elastic composites”, Composites: Part B. Vol. 35, pp. 413-420.
[14] Garcia Lage, R., Mota Soares, C.M., Mota Soares, C. A. and Reddy, J. N. (2004), “Layerwise partial mixed finite element analysis of magneto-electro-elastic plates”, Computers & Structures, Vol.82, pp.1293-1301.
[15] Wang, J., Lei, Q. and Feng, Q. (2010), “State vector approach of free-vibration analysis of magneto-electro-elastic hybrid laminated plates”, Composite structures, Vol.92, pp.1318-1324.
[16] Moita, J. M. S., Mota Soares, C. M. and Mota Soares, C. A. (2009), “Analysis of magneto-electro-elastic plates using higher order finite element model”, Composite structures, Vol.91, pp. 421-426.
[17] Xin L., Hu Z., (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Composite structures, Vol. 121, pp. 344-350.
[18] Guo J., Chen J. and Pan E (2016), "Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory", Composites Part B: Engineering, Vol. 107, pp.84-96.
[19] Liu J., Zhong P., Gao L., Wang W. and Lu S., (2016), "High order solutions for the magneto-electro-elastic plate with non-uniform materials", International Journal of Mechanical Sciences, Vol. 115-116, pp.532-551.
[20] Zhou Y. and Zhu J., (2016), "Vibration and bending analysis of multiferroic rectangular plates using third order shear deformation theory", Composite Structures, Vol. 153, pp.712-723.
[21] Chen, H. and Yu, W., (2014), “A multiphysics model for magneto-electro-elastic laminates” European Journal of Mechanics A/Solids, Vol.47, pp.23-44.
[22] Shooshtari A., Razavi S. (2015a), “Nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates”, IJE Transactions A: Basics, Vol. 28, No. 1, pp. 136-144.
[23] Farajpour A., Hari Yzdi M.R., Ratgoo A., Loghmani M., Mohammadi M., (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Composite Structures, Vol. 140, pp.323-336.
Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007