Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29526


Select areas to restrict search in scientific publication database:
3864
Augmented Lyapunov Approach to Robust Stability of Discrete-time Stochastic Neural Networks with Time-varying Delays
Abstract:
In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria is reduced notably. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.
Digital Object Identifier (DOI):

References:

[1] S. Zhong, X. Liu, Exponential stability and periodicity of cellular neural networks with time delay, Math. Comput. Model., vol. 45, pp. 1231-1240, 2007.
[2] J. Wang, L. Huang and Z. Guo, Dynamical behavior of delayed Hopfield neural networks with discontinuous activations, Appl. Math. Model., vol. 33, pp. 1793-1802, 2009.
[3] Y. Xia, Z. Huang and M. Han, Exponential p-stability of delayed Cohen- Grossberg-type BAM neural networks with impulses, Chaos, Solitons and Fractals, vol. 38, pp. 806-818, 2008.
[4] M. Ali, P. Balasubramaniam, Stability analysis of uncertain fuzzy Hopfield neural networks with time delays, Commun. Nonlinear Sci. Numer. Simulat., vol. 14, pp. 2776-2783, 2009.
[5] X. Fu, X. Li, Global exponential stability and global attractivity of impulsive Hopfield neural networks with time delays, Jour. Comput. Appl. Math., Vol. 231(1), pp. 187-199, 2009.
[6] Z. Han, W. Li, Global stability analysis of interval neural networks with discrete and distributed delays of neutral type, Exp. Syst. Appl., vol. 36, pp. 7328-7331, 2009.
[7] O. Kwon, J. Park, Improved delay-dependent stability criterion for neural networks with time-varying delays, Phys. Lett. A., vol. 373, pp. 529-535, 2009.
[8] Y. Liu, Z. Wang and X. Liu, Robust stability of discrete-time stochastic neural networks with time-varying delays, Neurocomputing, vol. 71, pp. 823-833, 2008.
[9] V. Singh, A new criterion for global robust stability of interval delayed neural networks, J. Comput. Appl. Math., vol. 221, pp. 219-225, 2008.
[10] W. Xiong, L. Song and J. Cao, Adaptive robust convergence of neural networks with time-varying delays, Nonlinear Anal: Real. world. Appl., vol. 9, pp. 1283-1291, 2008.
[11] W. Yu, L. Yao, Global robust stability of neural networks with time varying delays, J. Comput. Appl. Math., vol. 206, pp. 679-687 , 2007.
[12] H. Cho, J. Park, Novel delay-dependent robust stability criterion of delayed cellular neural networks, Chaos, Solitons and Fractals, vol. 32, pp. 1194-1200, 2007.
[13] Q. Song, J. Cao, Global robust stability of interval neural networks with multiple time-varying delays, Math. Comput. Simulat., vol. 74, pp. 38-46, 2007.
[14] T. Li, L. Guo, and C. Sun, Robust stability for neural networks with timevarying delays and linear fractional uncertainties, Neurocomputing, vol. 71, pp.421-427, 2007.
[15] V. Singh, Improved global robust stability of interval delayed neural networks via split interval: Generalizations, Appl. Math. Comput., vol. 206, pp. 290-297, 2008.
[16] Z. Wu, H. Su, J. Chu and W. Zhou, New results on robust exponential stability for discrete recurrent neural networks with time-varying delays, Neurocomputing, Vol. 72(13-15),pp. 3337-3342, 2009.
[17] M. Luo et al., Robust stability analysis for discrete-time stochastic neural networks , Appl. Math. Comput. vol. 209 (2), pp. 305-313, 2009.
[18] Q. Song, Z. Wang, A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays, Phys. Lett. A., vol. 368, pp. 134-145, 2007.
[19] B. Zhang, S. Xu, and Y. Zou, Improved delay-dependent exponential stability criteria for discrete-time recurrent neural networks with timevarying delays, Neurocomputing, vol. 72, pp. 321-330, 2008.
[20] J. Yu, K. Zhang, and S. Fei, Exponential stability criteria for discretetime recurrent neural networks with time-varying delay, Nonlinear Anal: Real World Appl., Vol. 11(1), pp. 207-216, 2010.
[21] Y. Zhang, S. Xu, and Z. Zeng, Novel robust stability criteria of discretetime stochastic recurrent neural networks with time delay, Neurocomputing, Vol. 72(13-15), pp. 3343-3351, 2009.
[22] X. Liu, et al., Discrete-time BAM neural networks with variable delays, Phys. Lett. A., vol. 367, pp. 322-330, 2007.
[23] H. Zhao, L. Wang, and C. Ma, Hopf bifurcation and stability analysis on discretetime Hopfield neural network with delay, Nonlinear Anal: Real World Appl., vol. 9, pp. 103-113, 2008.
[24] H. Gao, T. Chen, New results on stability of discrete-time systems with time-varying state delay, IEEE Trans. Autom. Control., vol. 52, pp. 328- 334, 2007.
[25] Y. Liu et al., Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis, Phys. Lett. A., vol. 362, pp. 480- 488, 2007.
[26] H. Zhao, L. Wang, Stability and bifurcation for discrete-time Cohen- Grossberg neural network, Appl. Math. Comput., vol. 179 pp. 787-798, 2007.
[27] T. Lee, U. Radovic, General decentralized stabilization of large-scale linear continuous and discrete time-delay systems, Int. J. Contr., vol. 46, pp. 2127-2140, 1978.
[28] B. Boyd, et al., Linear matrix inequalities in systems and control theory, Philadelphia (PA): SIAM, 1994.
Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007