Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29286


Select areas to restrict search in scientific publication database:
10009912
Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.
Digital Object Identifier (DOI):

References:

[1] Basseville, M., Nikiforov, I. V., et al. (1993). Detection of abrupt changes: theory and application, volume 104. Prentice Hall Englewood Cliffs.
[2] Basseville, M. (1988). Detecting changes in signals and systems: a survey. Automatica, 24, 309-326.
[3] Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (pp. 25-71). Springer, Berlin, Heidelberg.
[4] Chen, J., & Gupta, A. K. (2012). Parametric statistical change point analysis: With applications to genetics, medicine, and finance. Basel, Switzerland: Springer Science+Business Media, LLC.
[5] Giap, Q.-H., Ploix, S., and Flaus, J.-M. (2009). Managing Diagnosis Processes with Interactive Decompositions. Milan, Italy.
[6] Greiner, R., Smith, B. A., and Wilkerson, R. W. (1989). A correction to the algorithm in reiter’s theory of diagnosis. Artificial Intelligence, 41(1), 79-88.
[7] Guannan Li, Yunpeng Hu, Huanxin Chen, Haorong Li, Min Hu, Yabin Guo, Shubiao Shi, Wenju Hu (2016). A Sensor Fault Detection and Diagnosis Strategy for Screw Chiller System Using Support Vector Data Description-based D-statistic and DV-contribution plots. Energy and Buildings.
[8] Llanos, C. E., Sanchéz, M. C., & Maronna, R. A. (2017). A robust methodology for the sensor fault detection and classification of systematic observation errors. In Computer Aided Chemical Engineering (Vol. 40, pp. 1525-1530). Elsevier.
[9] Li, G., & Hu, Y. (2018). Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and principal component analysis. Energy and Buildings.
[10] Ni, K., Ramanathan, N., Chehade, M. N. H., Balzano, L., Nair, S., Zahedi, S., ... & Srivastava, M. (2009). Sensor network data fault types. ACM Transactions on Sensor Networks (TOSN), 5(3), 25.
[11] Pomorski, D., Perche, P., (2001). Inductive learning of decision trees: application to fault isolation of an induction motor. Eng. Appl. Artif. Intell. 14, 155-166 .
[12] Ploix, S. (2009). Des systèmes automatisés aux systémes coopérants application. au diagnostic et à la gestion énergétique.
[13] Ren, J. Y., Chen, C. Z., He, B., & Wang, B. (2008). Application of SiC and SiC/Al to TMA optical remote sensor. Optics and Precision Engineering, 16(12), 2537-2543.
[14] Shi, L., Cheng, P., & Chen, J. (2011). Sensor data scheduling for optimal state estimation with communication energy constraint. Automatica, 47(8), 1693-1698.
[15] Upadhyaya, S.K., Rand, R.H. and Cooke, J.R., 1983. A mathematical model of the effects of CO 2 on stomatal dynamics. J. Theor. Biol., 101: 415-440.
[16] Zhang, R., Peng, Z., Wu, L., Yao, B., & Guan, Y. (2017). Fault diagnosis from raw sensor data using deep neural networks considering temporal coherence. Sensors, 17(3), 549.
[17] Zhang, Y., Meratnia, N., & Havinga, P. J. (2010). Outlier detection techniques for wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 12(2), 159-170.
Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007