Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10009157
Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.
Digital Article Identifier (DAI):

References:

[1] Hisashi Takeda, Yoshiyasu Tamura, and Seisho Sato. Using the ensemble kalman filter for electricity load forecasting and analysis. Energy, 104:184 – 198, 2016.
[2] H. M. Al-Hamadi and S. A. Soliman. Fuzzy short-term electric load forecasting using kalman filter. IEE Proceedings - Generation, Transmission and Distribution, 153(2):217–227, March 2006.
[3] S.Sp. Pappas, L. Ekonomou, D.Ch. Karamousantas, G.E. Chatzarakis, S.K. Katsikas, and P. Liatsis. Electricity demand loads modeling using autoregressive moving average arma models. Energy, 33(9):1353 – 1360, 2008.
[4] Cheng-Ming Lee and Chia-Nan Ko. Short-term load forecasting using lifting scheme and arima models. Expert Systems with Applications, 38(5):5902 – 5911, 2011.
[5] Grzegorz Dudek. Pattern-based local linear regression models for short-term load forecasting. Electric Power Systems Research, 130:139 – 147, 2016.
[6] Aldo Goia, Caterina May, and Gianluca Fusai. Functional clustering and linear regression for peak load forecasting. International Journal of Forecasting, 26(4):700 – 711, 2010.
[7] G. Pan and Q. Dou. Load forecasting model based on multi-agents cooperation. In 2012 8th International Conference on Natural Computation, pages 1197–1202, May 2012.
[8] Lopez-Rodriguez and M. Hernandez-Tejera. Infrastructure based on supernodes and software agents for the implementation of energy markets in demand-response programs. Applied Energy, 158:1–11, 2015.
[9] JinXing Che and JianZhou Wang. Short-term load forecasting using a kernel-based support vector regression combination model. Applied Energy, 132:602 – 609, 2014.
[10] Wei-Chiang Hong. Electric load forecasting by support vector model. Applied Mathematical Modelling, 33(5):2444 – 2454, 2009.
[11] Wan He. Load forecasting via deep neural networks. Procedia Computer Science, 122:308 – 314, 2017. 5th International Conference on Information Technology and Quantitative Management, ITQM 2017.
[12] Seunghyoung Ryu, Jaekoo Noh, and Hongseok Kim. Deep neural network based demand side short term load forecasting. In 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), pages 308–313, Nov 2016.
[13] S. Hosein and P. Hosein. Load forecasting using deep neural networks. In 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), pages 1–5, April 2017.
[14] Murat Kankal, Adem Akpinar, Murat ˙Ihsan Komurcu, and Talat Sukru Ozsahin. Modeling and forecasting of turkey’s energy consumption using socio-economic and demographic variables. Applied Energy, 88(5):1927 – 1939, 2011.
[15] Serhat Kucukali and Kemal Baris. Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy, 38(5):2438 – 2445, 2010. Greater China Energy: Special Section with regular papers.
[16] Vassilis S. Kodogiannis, Mahdi Amina, and Ilias Petrounias. A clustering-based fuzzy wavelet neural network modek for short-term load forecasting. International Journal of Neural Systems, 23(5):1350024–1 – 1350024–19, 2013.
[17] Hesham K Alfares and Mohammad Nazeeruddin. Electric load forecasting: literature survey and classification of methods. International Journal of Systems Science, 33(1):23–34, 2002.
[18] Chin Wang Lou and Ming Chui Dong. A novel random fuzzy neural networks for tackling uncertainties of electric load forecasting. International Journal of Electrical Power & Energy Systems, 73:34–44, 2015.
[19] Fazil Gokgoz Fahrettin Filiz. Electricity price forecasting in turkey with artificial neural network models. Investment Management and Financial Innovations, 2016.
[20] Yann LeCun, Y Bengio, and Geoffrey Hinton. Deep learning. 521:436–44, 05 2015.
[21] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen Schmidhuber. LSTM: A search space odyssey. CoRR, abs/1503.04069, 2015.
[22] Heiko Hahn, Silja Meyer-Nieberg, and Stefan Pickl. Electric load forecasting methods: Tools for decision making. European Journal of Operational Research, 199(3):902 – 907, 2009.
[23] H. S. Hippert, C. E. Pedreira, and R. C. Souza. Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems, 16(1):44–55, Feb 2001.
Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007