Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10007817
Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics
Abstract:
We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.

References:

[1] S. J. Vaughan-Nichols, “Hard drive technology reaches a turning point,” Computer, vol. 36, no. 12, pp. 21–23, 2003.
[2] “Timeline: 50 Years of Hard Drives,” PCWorld, 13-Sep-2006. (Online). Available: http://www.pcworld.com/article/127105/article.html. (Accessed: 04-Apr-2017).
[3] “Seagate’s 10TB Barracuda Pro is the world’s largest consumer hard drive,” PCWorld, 19-Jul-2016. (Online). Available: http://www.pcworld.com/article/3096292/storage/seagates-10tb-barracuda-pro-is-the-worlds-largest-consumer-hard-drive.html. (Accessed: 04-Apr-2017).
[4] “Autopsy.” (Online). Available: http://www.sleuthkit.org/autopsy/. (Accessed: 28-Jan-2016).
[5] “dc3dd download | SourceForge.net.” (Online). Available: http://sourceforge.net/projects/dc3dd/. (Accessed: 27-Jan-2016).
[6] “Apache Kafka.” (Online). Available: http://kafka.apache.org/index.html. (Accessed: 09-Jun-2015).
[7] “Apache SparkTM - Lightning-Fast Cluster Computing.” (Online). Available: https://spark.apache.org/. (Accessed: 09-Jun-2015).
[8] “PostgreSQL: The world’s most advanced open source database.” (Online). Available: http://www.postgresql.org/. (Accessed: 28-Jan-2016).
[9] “Apache Solr -.” (Online). Available: http://lucene.apache.org/solr/. (Accessed: 05-Apr-2017).
[10] “Amazon EFS Performance - Amazon Elastic File System.” (Online). Available: http://docs.aws.amazon.com/efs/latest/ug/performance.html. (Accessed: 30-Jan-2017).
[11] “Amazon Elastic Block Store (EBS) – Block Storage for EC2,” Amazon Web Services, Inc. (Online). Available: //aws.amazon.com/ebs/. (Accessed: 30-Jan-2017).
[12] “Kubernetes,” Kubernetes. (Online). Available: http://kubernetes.io/. (Accessed: 30-Jan-2017).
[13] “Digital Corpora.”.
[14] “The CFReDS Project.” (Online). Available: https://www.cfreds.nist.gov/. (Accessed: 05-Apr-2017).
[15] “Amazon EC2 FAQs - Amazon Web Services,” Amazon Web Services, Inc. (Online). Available: //aws.amazon.com/ec2/faqs/. (Accessed: 05-Apr-2017).
Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007