Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29830

Select areas to restrict search in scientific publication database:
Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis
In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.
Digital Object Identifier (DOI):


[1] O. C. Zienkiewicz and R.L. Taylor, "The finite element method in solid and fluid mechanics, dynamics and nonlinearity", Vol. II, (Mc Graw Hill, New York, 1991).
[2] R.H. Gallagher, "Introduction to the finite elements" .Printice-Hall, Inc., Englewood Cliffs, (New Jersey, USA, 1975).
[3] Belarbi M.T. and Maalem T., On improved rectangular finite element for plane linear elasticity analysis, Revue européenne des éléments finis, Vol. 14, N° 8, 2005.
[4] Djoudi M.S. and Bahai H., A shallow shell finite element for the linear and nonlinear analysis of cylindrical shells. Engineering structures (25): 769- 778, 2003.
[5] Djoudi M.S. and Bahai H., A cylindrical strain-based shell element for vibration analysis of shell structures. Finite Elements in Analysis and Design, 40: 1947-1961.
[6] Belarbi M.T. and Maalem T., On improved rectangular finite element for plane linear elasticity analysis, Revue européenne des éléments finis, Vol. 14, N° 8, 2005.
[7] D. Hamadi, M. Mellas, R. Chebili and M. Nouaouria, "An efficient quadrilateral membrane element for civil engineering analysis”, World Journal of Engineering, Vol. 4 No.1, 2007, pp. 54 -65.
[8] Belounar L. and Guenfoud M.., A new rectangular finite element based on the strain approach for plate bending, Thin-Walled Structures 43 (2005) 47- 63.
[9] Hamadi D., Derbane S. and Ounis A., "Formulation of A new plate bending finite element based on the strain approach, international conference on applied and computational mathematics October 2012 Ankara.
[10] Batoz JL, Dahtt G. Mode´lisation des structures par e´le´ments finies. Poutres et plaques, vol. 2. Paris: Hermes; 199.
[11] Belarbi M.T. et Charif A., Développement d'un nouvel élémenthexaédrique simple basé sur le modèle en déformation pour l’étude des plaques minces et épaisses, Revue Européenne des éléments finis, Vol. 8, N° 2, pp. 135-157, 1999.
[12] D. Hamadi, "Analysis of structures by non-conforming finite elements",PhD Thesis, Civil engineering department, Biskra University, Algeria,2006, pp. 130.
[13] A. Adini. and R.W. Clough., "Analysis of plate bending by the finite element method”, Report to the Nat. Sci. Found., U.S.A., G 7337, 1961.
[14] Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells. London: McGraw-Hill; 1959.
Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007