Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10008518
Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study
Abstract:
In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.
Digital Article Identifier (DAI):

References:

[1] Chakrabarti A, Gupta AS. Hydromagnetic flow and heat transfer over a stretching sheet. Quarterly of Applied Mathematics. 1979;37(1):73-8.
[2] Andersson HI. An exact solution of the Navier-Stokes equations for magnetohydrodynamic flow. Acta Mechanica. 1995 Mar 1;113(1-4):241-4.
[3] Pop I, Na TY. A note on MHD flow over a stretching permeable surface. Mechanics Research Communications. 1998 May 1;25(3):263-9.
[4] Liao SJ. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. Journal of Fluid Mechanics. 2003 Jul;488:189-212.
[5] Sajid M, Hayat T. The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet. Chaos, Solitons & Fractals. 2009 Feb 15;39(3):1317-23.
[6] Fang T, Zhang J, Yao S. Slip MHD viscous flow over a stretching sheet–an exact solution. Communications in Nonlinear Science and Numerical Simulation. 2009 Nov 30;14(11):3731-7.
[7] Fang T, Zhang J. Closed-form exact solutions of MHD viscous flow over a shrinking sheet. Communications in Nonlinear Science and Numerical Simulation. 2009 Jul 31;14(7):2853-7.
[8] Rashidi MM. The modified differential transform method for solving MHD boundary-layer equations. Computer Physics Communications. 2009 Nov 30;180(11):2210-7.
[9] Ghotbi AR. Homotopy analysis method for solving the MHD flow over a non-linear stretching sheet. Communications in Nonlinear Science and Numerical Simulation. 2009 Jun 30;14(6):2653-63.
[10] Kumaran V, Banerjee AK, Kumar AV, Vajravelu K. MHD flow past a stretching permeable sheet. Applied Mathematics and Computation. 2009 Apr 1;210(1):26-32.
[11] Ishak A, Jafar K, Nazar R, Pop I. MHD stagnation point flow towards a stretching sheet. Physica A: Statistical Mechanics and its Applications. 2009 Sep 1;388(17):3377-83.
[12] Kumaran V, Kumar AV, Pop I. Transition of MHD boundary layer flow past a stretching sheet. Communications in Nonlinear Science and Numerical Simulation. 2010 Feb 28;15(2):300-11.
[13] Noor NF, Kechil SA, Hashim I. Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet. Communications in Nonlinear Science and Numerical Simulation. 2010 Feb 28;15(2):144-8.
[14] Tamizharasi R, Kumaran V. Pressure in MHD/Brinkman flow past a stretching sheet. Communications in Nonlinear Science and Numerical Simulation. 2011 Dec 31;16(12):4671-81.
[15] Yang C, Liao S. On the explicit, purely analytic solution of von Kármán swirling viscous flow. Communications in Nonlinear Science and Numerical Simulation. 2006 Feb 28;11(1):83-93
[16] Asghar S, Hanif K, Hayat T, Khalique CM. MHD non-Newtonian flow due to non-coaxial rotations of an accelerated disk and a fluid at infinity. Communications in Nonlinear Science and Numerical Simulation. 2007 Jul 31;12(4):465-85.
[17] Attia HA. Rotating disk flow and heat transfer through a porous medium of a non-Newtonian fluid with suction and injection. Communications in Nonlinear Science and Numerical Simulation. 2008 Oct 31;13(8):1571-80.
[18] Rashidi MM, Shahmohamadi H. Analytical solution of three-dimensional Navier–Stokes equations for the flow near an infinite rotating disk. Communications in Nonlinear Science and Numerical Simulation. 2009 Jul 31;14(7):2999-3006.
[19] Devi SA, Devi RU. Soret and Dufour effects on MHD slip flow with thermal radiation over a porous rotating infinite disk. Communications in Nonlinear Science and Numerical Simulation. 2011 Apr 30;16(4):1917-30.
[20] Dandapat BS, Singh SK. Two-layer film flow over a rotating disk. Communications in Nonlinear Science and Numerical Simulation. 2012 Jul 31;17(7):2854-63.
[21] Turkyilmazoglu M, Senel P. Heat and mass transfer of the flow due to a rotating rough and porous disk. International Journal of Thermal Sciences. 2013 Jan 31;63:146-58.
[22] Hayat T, Muhammad T, Shehzad SA, Alsaedi A. On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: A numerical study. Computer Methods in Applied Mechanics and Engineering. 2017 Mar 1;315:467-77.
[23] Kármán TV. Über laminare und turbulente Reibung. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 1921 Jan 1;1(4):233-52.
Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007