Excellence in Research and Innovation for Humanity

International Science Index

Select areas to restrict search in scientific publication database:
Note on the Necessity of the Patch Test
We present a simple nonconforming approximation of the linear two–point boundary value problem which violates patch test requirements. Nevertheless the solutions, obtained from these type of approximations, converge to the exact solution.
Digital Article Identifier (DAI):


[1] G.P. Bazeley, Y.K. Cheung, B.M. Irons, O.C. Zienkiewicz, Triangular elements in bending: Conforming and nonconforming solutions in Proceedings Conference on Matrix Methods in Structural Mechanics, Wright Patterson A. F. B., Dayton, OH, 547-576.
[2] B.M. Irons, A. Razzaque, Experience with the patch test for convergence of finite elements in A. K. Aziz, ed., The mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 557-587.
[3] G. Strang, G.J. Fix, An analysis of the finite element method, Prentice- Hall Inc., Englewood Cliffs, N.J., 1973.
[4] G. Sander, P. Beckers The influence of the choice of connectors in the finite element method, Proc. conf. on the mathematical aspects of the finite element methods, Rome 75, Galligani, I., Magenes, E., eds., Lecture notes in mathematics, 606, Springer-Verlag, New York, 316-340, 1977.
[5] E.R.A. Oliveira, The patch test and the general convergence criteria of the finite element method, International journal of solids and structures, vol. 13, 159-178, 1977.
[6] F. Stummel, The generalised patch test, SIAM Journal of numerical analysis, vol. 16, no. 3, 449-471, 1979.
[7] F. Stummel, The limitations of the patch test, International journal for numerical methods in engineering, vol. 15, 177-188, 1980.
[8] B.M. Irons, M. Loikkanen, An engineer-s defence of the patch test, International journal for numerical methods in engineering, vol. 19, 1391- 1401, 1983.
[9] Z.C. Shi, An explicit analysis of Stummel-s patch test examples, International journal for numerical methods in engineering, vol. 20, 1233-1246, 1984.
[10] Z.C. Shi, A convergence condition for the quadrilateral Wilson element, Numerische mathematik, vol. 44, 394-361, 1984.
[11] Z.C. Shi, The F-E-M-test for convergence of nonconforming finite elements, Mathematics of computation, vol. 49, no. 40, 391-405, 1987.
[12] Z.C. Shi, On Stummel-s examples to the patch test, Computational mechanics, vol. 5, 81-87 (1989).
[13] R.L. Taylor, J.C. Simo, O.C. Zienkiewicz, A.C.H. Chan, The patch test- a condition for assessing FEM convergence, International journal for numerical methods in engineering, vol. 22, 39-62, 1986.
[14] O.C. Zienkiewicz, R.L. Taylor, The finite element patch test revisited. A computer test for convergence, validation and error estimates, Computer methods in applied mechanics and engineering, 149, 223-254, 1997.
[15] P.G. Ciarlet, J.L. Lions, Handbook of numerical analysis, Volume II, Finite element methods (Part 1), North-Holland, Amsterdam, 1991.
[16] M. Wang, On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements, SIAM J. Numer. Anal., 39(2), 363-384, 2001.
Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007