Scholarly Research Excellence

Digital Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29002


Select areas to restrict search in scientific publication database:
10008777
Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation
Abstract:
This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.
Digital Object Identifier (DOI):

References:

[1] Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., &Grulke, E. A. “Anomalous thermal conductivity enhancement in nanotube suspensions,” Applied physics letters, 79(14), 2252-2254, 2001
[2] Venkateswarlu, B., Narayana, P. S. “Chemical reaction and radiation absorption effects on the flow and heat transfer of a nanofluid in a rotating system,” Applied Nanoscience, 5(3), 351-360, 2015
[3] Reddy, M. G. “Influence of magnetohydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet,” Journal of Scientific Research, 6(2), 257-272, 2014
[4] Sorbie, K. S., Clifford, P. J., Jones, E. R. W. “The rheology of pseudoplastic fluids in porous media using network modeling,” Journal of Colloid and Interface Science, 130(2), 508-534, 1989
[5] Pakzad, L., Ein-Mozaffari, F., Chan, P. “Using electrical resistance tomography and computational fluid dynamics modeling to study the formation of cavern in the mixing of pseudoplastic fluids possessing yield stress,” Chemical Engineering Science, 63(9), 2508-2522, 2008
[6] Kothandapani, M., Prakash, J. “Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel,” International Journal of Heat and Mass Transfer, 81, 234-245, 2015
[7] Nadeem, S., Hussain, S. T. “Flow and heat transfer analysis of Williamson nanofluid,” Applied Nanoscience, 4(8), 1005-1012, 2014
[8] Prasannakumara, B. C., Gireesha, B. J., Gorla, R. S., & Krishnamurthy, M. R. “Effects of chemical reaction and nonlinear thermal radiation on Williamson nanofluid slip flow over a stretching sheet embedded in a porous medium,” Journal of Aerospace Engineering, 29(5), 04016019, 2016
[9] Platt, J. R. " Bioconvection Patterns" in Cultures of Free-Swimming Organisms,” Science, 133(3466), 1766-1767, 1961
[10] Kuznetsov, A. V. “Bio-thermal convection induced by two different species of microorganisms,” International Communications in Heat and Mass Transfer, 38(5), 548-553,2011
[11] Kuznetsov, A. V. “The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms,” European Journal of Mechanics-B/Fluids, 25(2), 223-233, 2006
[12] Nield, D. A., Kuznetsov, A. V. “The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: oscillatory convection,” International journal of thermal sciences, 45(10), 990-997, 2006
[13] Avramenko, A. A., Kuznetsov, A. V. “Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers,” International communications in heat and mass transfer, 31(8), 1057-1066, 2004
[14] Alloui, Z., Nguyen, T. H., Bilgen, E. “Numerical investigation of thermo-bioconvection in a suspension of gravitactic microorganisms,” International journal of heat and mass transfer, 50(7), 1435-1441, 2007
[15] Mahdy, A. “Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media,” World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 11(4), 829-839, 2017
[16] Tham, L., Nazar, R., & Pop, I. “Steady mixed convection flow on a horizontal circular cylinder embedded in a porous medium filled by a nanofluid containing gyrotactic micro-organisms,” Journal of Heat Transfer, 135(10), 102601, 2013
[17] Kuznetsov, A. V. “The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms” International Communications in Heat and Mass Transfer, 37(10), 1421-1425, 2010
[18] Buongiorno, J. “Convective transport in nanofluids,”. Journal of Heat Transfer, 128(3), 240-250, 2006
[19] Aziz, A., Khan, W. A., Pop, I. “Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms,” International Journal of Thermal Sciences, 56, 48-57, 2012
[20] Kho, Y. B., Hussanan, A., Mohamed, M. K. A., Sarif, N. M., Ismail, Z., &Salleh, M. Z. “Thermal radiation effect on MHD Flow and heat transfer analysis of Williamson nanofluid past over a stretching sheet with constant wall temperature,” In Journal of Physics: Conference Series (Vol. 890, No. 1, p. 012034). IOP Publishing, 2017
[21] Babu, M. J., Sandeep, N. “Effect of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic-nanofluid over a stretching sheet” Alexandria Engineering Journal, 55(3), 1931-1939, 2016
[22] Haroun, N. A., Sibanda, P., Mondal, S., Motsa, S. S. “On unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using the spectral relaxation method,” Boundary value problems, 2015(1), 24, 2015
[23] C. Canuto ,M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics,Springer-Verlag, Berlin., 1988
[24] Motsa, S. S., Makukula, Z. G. On spectral relaxation method approach for steady von Kármán flow of a Reiner-Rivlin fluid with Joule heating, viscous dissipation and suction/injection. Central European Journal of Physics, 11(3), 363-374, 2013
[25] S. Shateyi, A new numerical approach to MHD ow of a maxwelluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction, Boundary Value Problems,196 (2013) .
[26] Shateyi, S., &Makinde, O. D. “Hydromagnetic stagnation-point flow towards a radially stretching convectively heated disk” Mathematical Problems in Engineering, 2013.
[27] Awad, F. G., Motsa, S., Khumalo, M. “Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy” PloS one, 9(9), e107622, 2014
[28] Wang, C. Y. “Free convection on a vertical stretching surface,” Journal of Applied Mathematics and Mechanics/ZeitschriftfürAngewandteMathematik und Mechanik, 69(11), 418-420, 1989
[29] Gorla, R. S. R., Sidawi, I. “Free convection on a vertical stretching surface with suction and blowing,” Applied Scientific Research, 52(3), 247-257, 1994
Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007