Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29209

Select areas to restrict search in scientific publication database:
Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method
In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples  are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.
Digital Object Identifier (DOI):


[1] M. Caputo, Linear models of dissipation whose Q is almost frequency in dependent-II, Geophys. J. Roy. Astron. Soc. 13(5)(1967) 529-539.
[2] W. E. Olmstead, R. A. Handelsman, Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Rev. 18(2)(1976) 275-291.
[3] Y. Nawaz Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Comput. Math. Appl. 61(8)(2011) 2330-2341.
[4] S. R. Seyed Alizadeh , G. G. Domairry and S. Karimpour, An approximation of the analytical solution of the linear and nonlinear integrodifferential equations by homotopy perturbation method, Acta. Appl. Math. 104(3) (2008) 355-366.
[5] S. Momani, M. A. Noor, Numerical methods for four-order fractional integro-differential equations, Appl. Math. Comput. 182(1) (2006) 754-760.
[6] S. Momani , R. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Comput. Math. Appl. 52(3-4)(2006) 459-470.
[7] X. Zhang, B. Tang, Y. He, Homotopy analysis method for higher-order fractional integro-differential equations Comput. math. appl. 62(8) (2011) 3194C3203.
[8] E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. math. comput. 176(1) (2006) 1-6.
[9] A. Saadatmandi, M. Dehghan, A Legendre collocation method for fractional integro-differential equations J. Vib. Control. 17(3) (2011) 2050-2058.
[10] H. Saeedi, M. Mohseni Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets Commun. Nonlinear. Sci. Numer. Simulat. 16(3) (2011) 1216-1226.
[11] L. Zhu, Q. Fan, Solving fractional nonlinear Fredholm integrodifferential equations by the second kind Chebyshev wavelet, Commun. Nonlinear. Sci. Numer. Simulat. 17(6)(2012) 2333-2341.
[12] P. Mokhtary, F. Ghoreishi, The L2-convergence of the Legendre spectral Tau matrix formulation for nonlinear fractional integro differential equations, Numer. Algor. 58(4)(2011) 475-496.
[13] S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Math. Appl. 1(4) (2001) 141-155.
[14] I. Podlubny, Fractional Differential Equations New York, USA: Academic Press, 1999.
[15] A. M. Wazwaz A new algorithm for calculatingadomianpolynomials for nonlinear operators, Appl. Math. Comput. 111(1)(2002) 33-51.
[16] Y. Khan, A effective modification of the Laplace decomposition method for nonlinear equations, Int. J. Nonlin. Sci. Num. Simul. 10(11-12) (2009) 1373-1376.
Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007