Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10002157
On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations
Abstract:
This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.
Digital Article Identifier (DAI):

References:

[1] R. A Ademiluyi, “New Hybrid methods for system of ODE, Ph.D. Thesis, UNIBEN Nigeria, 1987.
[2] D. Barton, “On Taylor series and stiff equations”, ACM transaction on mathematical software, 1980, 6, 280-294.
[3] D. Barton, I.M Willers and R.V.M Zahar “Taylor series method for ODE - an evaluation”, Mathematical Software. New York: Academic Press, 1971b, 369-390.
[4] G. F. Corlis and Y. F. Chang, “Solving ODE using Taylor’s series”, ACM, Transactions on Mathematical Software, 1982, 114-144.
[5] G. Dahlquist, and A. Bjorck, Numerical methods, Englewood cliffs, New Jersey; Prentice Hall, 1974.
[6] S. O Fatunla, “A new algorithm for the Numerical solution of ODEs’’, Computers and Mathematics with Applications, 1976, 2, 247-2531.
[7] S. O. Fatunla, “An Impact Two-Point Numerical Integration Formula for linear and nonlinear stiff systems of ODEs”, Maths of Computation 32, 1978a.
[8] S. O. Fatunla, “A variable order one-step scheme for numerical solutions of ODEs,” Computer and Mathematics with Application, 1978b, 4, 33- 41.
[9] S. O. Fatunla, “Recent advances in stiff ODE solvers” UNIBEN, Nigeria, 1981e, 25-29.
[10] C. W. Gear, “Numerical IVPs in ODE”, Englewood cliffs, New Jersey; Prentice Hall, 1971b.
[11] E. A. Ibijola and R. B. Ogunrinde, “On a new numerical scheme for the solution of IVPs, Australian Journal of Basic and Applied science, 2010.
[12] J. D. Lambert, “Computational methods in ODEs”, New York, U.K, 1973a
[13] K. O. Okosun, “Kth order inverse polynomial methods for the integration of ordinary differential equations with singularities’’, An M. Tech in Industrial Mathematics and Computer Department of Federal University of Technology. Akure, Nigeria, 2003.
[14] C. S. Wallace and G. K. Gupta, (1973), “General linear multi step methods to solve ODEs”, The Australian Computer Journal, 1973, 5, 62- 69.
Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007