Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10006663
Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator
Abstract:
The organic–inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 105 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.
Digital Article Identifier (DAI):

References:

[1] D. B. Mitzi, “Synthesis, structure, and properties of organic-inorganic perovskites and related materials.” Prog. Inorg. Chem., vol. 48, pp. 1-121, 2007.
[2] S. Zhang,G. Lanty, J. S. Lauret, E. Deleporte, P. Audebert and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors.” Acta. Mater., vol. 57, pp. 3301-3309, 2009.
[3] D. Ionescu, I. B. Ciobanu and I. Radinschi, “Frequency resonant behaviour of the effective permittivity for a polyvalent liquid crystal in microwave range.” J. Optoelectron. Adv. M., vol. 9, pp. 2608-2616, 2007.
[4] S. Zhang, P. Audebert, Y. Wei, J. S. Lauret, L. Galmiche and E. Deleporte “Synthesis and optical properties of novel organic–inorganic hybrid uv (R–NH 3) 2 PbCl 4 semiconductors.” J. Mater. Chem., vol. 21, pp. 466-474, 2011.
[5] M. F. Mostafa and S. S. El-Khiyami, “Crystal structure and electric properties of the organic–inorganic hybrid: ((CH 2)6(NH3)2)ZnCl4.” J. Solid State Chem., vol. 209, pp. 82-88, 2014.
[6] B. Kulicka, R. Jakubas, Z. Ciunik, G. Bator, W. Medycki, J. Świergiel and J. Baran, “Structure, phase transitions and molecular dynamics in 4-methylpyridinium tetrachloroantimonate (III), (4-CH3C5H4NH)(SbCl4).” J. Phys. Chem. Solids, vol. 65, pp. 871-879, 2004.
[7] C. B. Mohamed, K. Karoui, S. Saidi, K. Guidara and A. B. Rhaiem, “Electrical properties, phase transitions and conduction mechanisms of the ((C2H5)NH3)2CdCl4 compound. ” Physica B, vol. 451, pp. 87-95, 2014.
[8] S. Kalyanaraman, P. M. Shajinshinu and S. Vijayalakshmi, “Refractive index, band gap energy, dielectric constant and polarizability calculations of ferroelectric Ethylenediaminium Tetrachlorozincate crystal.” J. Phys. Chem. Solids, vol. 86, pp. 108-113, 2015.
[9] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications.” J. Mater. Chem. A, vol. 1, pp. 5628-5641, 2013.
[10] N. A. Benedek, J. M. Rondinelli, H. Djani, P. Ghosez and P. Lightfoot, “Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments.” Dalton Trans., vol. 44, pp. 10543-10558, 2015.
[11] Z. Cheng and J. Lin, “Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering.” CrystEngComm, vol. 12, pp. 2646-2662, 2010.
[12] Y. Wei, P. Audebert, L. Galmiche, J. S. Lauret and E. Deleporte, “Synthesis, optical properties and photostability of novel fluorinated organic–inorganic hybrid (R–NH3)2PbX4 semiconductors.” J. Phys. D: Appl. Phys., vol. 46, pp. 135105, 2013.
[13] K. Pradeesh, G. S. Yadav, M. Singh and G. V. Prakash, “Synthesis, structure and optical studies of inorganic–organic hybrid semiconductor, NH3(CH2)12NH3PbI4.” Mater. Chem. Phys., vol. 124(1), pp. 44-47, 2010.
[14] N. V. Petrova and , I. N. Yakovkin “DFT calculations of the electronic structure of SnOx layers on Pd (110).” Eur. Phys. J. B, vol. 86, pp. 1-5, 2013.
[15] R. El Mrabet, S. Kassou, O., Tahiri, A., Belaaraj and P. Guionneau, “Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid (NH3-(CH2) 10-NH3) ZnCl4.” Eur. Phys. J. Plus, vol. 131, pp. 369, 2016.
[16] C. E. Ekuma, V. I. Anisimov, J. Moreno and M. Jarrell, “Electronic structure and spectra of CuO.” Eur. Phys. J. B, vol. 87, pp. 1-6, 2014.
[17] S. Kassou, A., Kaiba, P., Guionneau and A. Belaaraj, “Organic-inorganic hybrid perovskite (C6H5(CH2)2NH3)2CdCl4: Synthesis, structural and thermal properties.” J. Struct. Chem., vol. 57, pp. 737-743, 2016.
[18] S. Naderizadeh, S. M. Elahi, M. R. Abolhassani, F. Kanjouri, N., Rahimi and J. Jalilian, “Electronic and optical properties of Full-Heusler alloy Fe3− xMnxSi.” Eur. Phys. J. B, vol. 85, pp. 1-7, 2012.
[19] S. Sharma and A. S. Verma, “Structural, electronic, optical, elastic and thermal properties of ZnXAs2 (X= Si and Ge) chalcopyrite semiconductors.” Eur. Phys. J. B, vol. 87, pp. 1-14, 2014.
[20] R. Khenata, B. Daoudi, M. Sahnoun, H., Baltache, M. Rérat, A. H. Reshak, B. Bouhafs, H. Abid and M. Driz. “Structural, electronic and optical properties of fluorite-type compounds.” Eur. Phys. J. B, vol. 47, pp. 63-70, 2005.
[21] I. C. Smith, E. T. Hoke, D. Solis‐Ibarra, M.D. McGehee and H. I. Karunadasa, “A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability.” Angew. Chem. Int. Ed., vol. 126, pp. 11414-11417, 2014.
[22] C. G. Bischak, E. M., Sanehira, J. T. Precht, J. M. Luther and N. S. Ginsberg “Heterogeneous Charge Carrier Dynamics in Organic–Inorganic Hybrid Materials: Nanoscale Lateral and Depth-Dependent Variation of Recombination Rates in Methylammonium Lead Halide Perovskite Thin Films.” Nano letters, vol. 15, pp. 4799-4807, 2015.
[23] M. A. Green, Y. Jiang, A. M. Soufiani and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites.” J. phys. Chem. Lett., vol. 6, pp. 4774-4785. 2015.
[24] X. Liu, W. Zhao, H. Cui, Y. A. Xie, Y. Wang, T. Xu and F. Huang, “Organic–inorganic halide perovskite based solar cells–revolutionary progress in photovoltaics.” Inorg. Chem. Front., vol. 2, pp. 315-335, 2015.
[25] N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology.” Mater. Today, vol. 18, pp. 65-72, 2015.
[26] Y. Zhao and K. Zhu, “Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.” Chem. Soc. Rev, vol. 45, pp. 655-689, 2016.
[27] L. Pedesseau, J. M. Jancu, A. Rolland, E. Deleporte, C. Katan and J. Even, “Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications.” J. Opt. Quant. Electron., vol. 46, pp. 1225-1232, 2014.
[28] C. Motta, F. El-Mellouhi and S. Sanvito,. “Charge carrier mobility in hybrid halide perovskites.” Sci. Rep., vol. 5, 2015.
[29] S. M. B. Dhas and S. Natarajan, “Growth and characterization of two new NLO materials from the amino acid family: l-Histidine nitrate and l-Cysteine tartrate monohydrate.” Opt. Commun., vol. 281, pp. 457-462, 2008.
[30] J. J. Zhang, T. Zhang, Y. E. Jin, S. S. Liu, S. D. Yuan, Z. Cui, L. Zhang and W. H. Wang, “A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes.” Optoelectron. Lett., vol. 10, pp. 198-201, 2014.
[31] L. Wang, M. H. Yoon, G. Lu, Y. Yang, A., Facchetti and T. J. Marks, “High-performance transparent inorganic–organic hybrid thin-film n-type transistors.” Nat. Mater., vol. 5, pp. 893-900, 2006.
[32] S. Kassou, R. El-Mrabet, A. Kaiba, P. Guionneau and A. Belaaraj, “Combined experimental and density functional theory studies of an organic–inorganic hybrid perovskite.” Phys. Chem. Chem. Phys., vol. 18, pp. 9431-9436, 2016.
[33] W. Amamou, H. Feki, N. Chniba-Boudjada and F. Zouari, “Synthesis, crystal structure, vibrational properties and theoretical investigation of (N, N- dimethylbenzylammonium) trichlorocadmate (II).” J. Mol. Struct.,vol. 1059, pp. 169-175, 2014.
[34] A. Jellibi, I. Chaabane and K. Guidara, “Experimental and theoretical study of AC electrical conduction mechanisms of Organic–inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II).” Physica E, vol. 80, pp.155-162, 2016.
[35] B. Staśkiewicz, I. Turowska-Tyrk, J. Baran, C. Górecki and Z. Czapla, “Structural characterization, thermal, vibrational properties and molecular motions in perovskite-type diaminopropanetetrachlorocadmate NH3(CH2)3NH3CdCl4 crystal.” J. Phys. Chem. Solid., vol. 75, pp. 1305-1317, 2014.
[36] R. Elwej, M. Hamdi, N. Hannachi and F. Hlel, “Synthesis, structural characterization and dielectric properties of (C6H9N2)2(Hg0.75Cd0.25)Cl4 compound.” Spectrochim. Acta Mol. Biomol., vol. 121, pp. 632-640, 2014.
[37] S. Kalyanaraman, V. Krishnakumar, H. Hagemann and K. Ganesan, “Infrared and polarized Raman spectra of dixanthinium tetrachlorozincate single crystal.” J. Phys. Chem. Solid., vol. 68, pp. 256-263, 2007.
[38] P. Judeinstein and C. Sanchez, “Hybrid organic–inorganic materials: a land of multidisciplinarity.” J. Mater. Chem., vol. 6, pp. 511-525, 1996.
[39] C. Sanchez, B. Lebeau, F. Chaput and J. P. Boilot, “Optical properties of functional hybrid organic–inorganic nanocomposites.” Adv. Mater., vol. 15, pp. 1969-1994, 2003.
[40] C. Kitel, Introduction to solid state. John Wiley Sons, 1966.
[41] J. Tauc, Optical properties of amorphous semiconductors. In Amorphous and Liquid Semiconductors. Springer US, 1974, pp. 159-220.
[42] A. O. Polyakov, A. H. Arkenbout, J. Baas, G. R. Blake, A. Meetsma, A., Caretta, P. H. M. van Loosdrecht and T. T. M. Palstra, “Coexisting ferromagnetic and ferroelectric order in a CuCl4-based organic–inorganic hybrid.” Chem. Mater., vol. 24, pp. 133-139, 2011.
[43] S. K. J. Al-Ani, Y. Al-Ramadin, M. S. Zihlif, M. Volpe, M. Malineonico, E. Martuscelli and G. Ragosta. “ The optical properties of polymethylmethacrylate polymer dispersed liquid crystals”. Polymer Testing, vol. 18, pp. 611-619, 1999.
[44] S. Ilican, M. Zor, Y. Caglar, and M. Caglar, “ Optical characterization of the CdZn(S1-xSex)2 thin films deposited by spray pyrolysis method.” Opt. Appl, vol. 36, pp. 29-37, 2006..
[45] F. E. Fernández, Y. González, H. Liu, A. Martínez, V. Rodríguez and W. Jia, “Structure, morphology, and properties of strontium barium niobate thin films grown by pulsed laser deposition.” Integr. Ferroelectr., vol. 42, pp. 219-233, 2002.
[46] M. D. Catedral, A. K. G. Tapia, R. V. Sarmago, J. P. Tamayo and E. J. del Rosario, “Effect of dopant ions on the electrical conductivity and microstructure of polyaniline (emeraldine salt).” Science Diliman, Vol. 16(2), pp. 41-46, 2007.
[47] W. Li, Z. Chen, R. N. Premnath, B. Kabius and O. Auciello, “Controllable giant dielectric constant in AlOx/TiOy nanolaminates.” J. Appl. Phys., vol. 110, pp. 024106, 2011.
[48] Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H.Li, A. Haque, L-Q. Chen, T. Jackson and Q. Wang, “Flexible high-temperature dielectric materials from polymer nanocomposites.” Nature, vol. 523, pp. 576-579, 2015.
[49] K. Maex, M.R. Baklanov, D. Shamiryan, S.H. Brongersma and Z.S. Yanovitskaya “Low dielectric constant materials for microelectronics.” J. Appl. Phys., vol. 93, pp. 8793-8841, 2003.
[50] D. H. Fabini, T. Hogan, H. A. Evans, C. C. Stoumpos, M. G. Kanatzidis and R. Seshadri “Dielectric and thermodynamic signatures of low-temperature glassy dynamics in the hybrid perovskites CH3NH3PbI3 and HC(NH2)2PbI3.” J. Phys. Chem. Chem. Lett., vol. 7, pp. 376-381, 2016.
Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007