Excellence in Research and Innovation for Humanity

International Science Index

Select areas to restrict search in scientific publication database:
Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle
Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.
Digital Article Identifier (DAI):


[1] J. Brodell, and A. Soni, “Design of the Crank-Rocker Mechanism with Unit Time Ratio”, Journal of Mechanisms, vol. 5, no. 1, pp. 1-4, 1970.
[2] R. Singh, H. Chaudhary, and A. Singh, “Defect-free optimal synthesis of crank-rocker linkage using nature-inspired optimization algorithms”, Journal of Mechanism and Machine Theory, vol. 116, pp. 105-122, 2017.
[3] A. Hall, in: Kinematic and Linkage Design, Prentice-Hall, Englewood Cliffs, NJ, 1961, pp. 41. (Online). Available: https://babel.hathitrust.org/cgi/pt?id=mdp.39015002035189;view=1up;seq=61 (Accessed: 12- Oct.- 2017).
[4] D. Myszka, in: Machines and Mechanisms: Applied Kinematic Analysis, 4th Edition, Prentice Hall, New York, USA, 2012, pp. 93.
[5] S. Balli and S. Chand, “Transmission Angle in Mechanisms-Triangle in Mech.”, Journal of Mechanism and Machine Theory, vol. 37, no. 2, pp. 175-195, 2002.
[6] K. Waldron, G. Kinzel, and S. Agrrawal, in: Kinematic, Dynamic, and Design of Machinery, Wiley, London, UK, 2016, pp. 102-104. (Online). Available:https://books.google.com.eg/books?id=vRqJCgAAQBAJ&pg=PA102#v=onepage&q&f=false (Accessed: 10- Oct.- 2017).
[7] G. Rothenhofer, C. Walsh, and A. Slocum, “Transmission Ratio Based Analysis and Robust Design of Mechanisms”, Journal of Precision Engineering, vol. 34, pp. 790-797, 2010.
[8] E. Tanik, “Transmission Angle in Complaint Slider-Crank Mechanism”, Journal of Mechanism and Machine Theory, vol. 46, pp. 1623-1632, 2011.
[9] J. Kimberlla, in: Kinematic Analysis and Synthesis, McGraw-Hill, New York, 1991, pp. 14-15. (Online). Available: https://books.google.com.eg/books?hl=ar&id=rBEoAQAAMAAJ (Accessed: 12- Oct.- 2017).
[10] R. Soylu, “Analytical Synthesis of Mechanisms – Part-1”, Journal of Mechanism and Machine Theory, vol. 28, no. 6, pp. 825-833, 1993.
[11] P. Eschenbach and D. Tesar, “Link Length Bounds on the Four Bar Chain”, Journal of Engineering for Industry Trans. ASME, vol. 93, no. 1, pp. 287-293, 1971.
[12] D. Tao, in: Applied Linkage Synthesis, Addison-Wesley, Reading, MA, 1964, pp. 7-12.
[13] P. Rao, “Kinematic Synthesis of Variable Crank-rocker and Drag linkage planar type Five-Bar Mechanisms with Transmission Angle Control”, Journal of Engineering Research and Application, vol. 3, no. 1, pp. 1246-1257, 2013.
[14] T. Patal, “Synthesis of Four Bar Mechanism for Polynomial Function Generation by Complex Algebra”, in National Conference in Recent Trends in Engineering & Technology, B.V.M Engineering Collage, Nagar Gujarat INDIA, May 2011, pp. 1-5.
[15] G. Hassaan, “Synthesis of Planar Mechanisms, Part III: Four-Bar Mechanisms for Three Coupler-Positions Generation”, Global Journal of Advanced Research, vol. 2, no. 4, pp. 726-734, 2015.
[16] G. Marín, F. Alonso and M. Castillio, “Shape Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a Wavelet-Based Neural Network”, Journal of Mechanism and Machine Theory, vol. 44, no. 6, pp. 1132-1143, 2009.
[17] K. Gupta, “Design of Four-Bar Function Generators with Mini-Max Transmission Angle”, Journal of Engineering for Industry Trans. ASME, vol. 99, no. 2, pp. 360-366, 1977.
[18] K. Khader, “Nomograms for Synthesizing Crank Rocker Mechanism with a Desired Optimum Range of Transmission Angle”, International Journal of Mining, Metallurgy and Mechanical Engineering (IJMMME), vol. 3, no. 3, pp. 155-160, 2015.
[19] K. Khader, “Computer Aided Design for Synthesizing Mechanism with Optimal Transmission Angle”, In: the 6th International Conference on Trends in Mechanical and Industrial Engineering (ICTMIE'2015), Dubai, UAE, pp. 12-17, Sept., 2015.
[20] J. Buśkiewicz, “A Specific Problem of Mechanism Synthesis”, Journal of Applied Mechanics and Engineering, vol. 19, no. 3, pp. 513-522, 2014.
[21] P. Gensen, in: Classical and Modern Mechanisms for Engineers and Inventors, CRC Press, USA, 1991, pp. 19-25.
[22] A. Mallik, A. Ghosh and G. Dittrich, in: Kinematic Analysis and Synthesis of Mechanism, CRC Press, USA, 1994, pp. 262-264. (Online). Available:https://books.google.com.eg/books?id=GbSDz8Sge8kC&pg=PA264&lpg=PA262#v=onepage&q&f=false (Accessed: 16- Oct.- 2017).
[23] R. Echempati, “Dynamic Characteristics of a Four-Bar Linkage with a Composite Coupler”, Journal of Acoustics and Vibration, vol. 9, no. 4, pp. 198-204, 2004.
[24] R. Soong, and K. Hsu, “A Design Combining Kinematic and Dynamic Balancing Considerations with Bi-Material Links for Four-Bar Linkages”, Journal of Information and Optimization Sciences, vol. 28, no. 4, pp. 663-686, 2007.
[25] A. Vaidya, and P. Padole, “A Performance Evaluation of Four Bar Mechanism Considering Flexibility of Links and Joints Stiffness”, The Open Mechanical Engineering Journal, vol. 4, pp. 16-28, 2010.
[26] D. Bandopadhya, B. Bhattacharya, And A. Dutta, “Pseudo-Rigid Body Modeling of IPMC for a Partially Compliant Four-bar Mechanism for Work Volume Generation”, Journal of Intelligent Material Systems and Structures, vol. 20, pp. 51-61, 2009.
[27] X. Xin, J. She, T. Yamasaki, and Y. Liu, “Swing-Up Control Based on Virtual Composite Links for N-Link Under-actuated Robot with Passive First Joint”, Journal of Automatica, vol. 45, pp. 1986-1994, 2009.
[28] D. Willis, S. Nokleby, and R. Pop-Iliev, “Development of a Composite-Based Long Reach Robotic Arm”, in Symposium of CCToMM, M³, Mechanisms, Machines, and Mechatronics, Québec, Canada, May 2009, pp. 1-10.
[29] S. Matekar, and G. Gogate, “Optimum Synthesis of Path Generating Four-Bar Mechanism Using Differential Evaluation and Modified Error Function”, Mechanism and Machine Theory, vol. 52, pp. 158-179, 2012.
[30] U. Clemson, in: Fundamentals of Engineering Supplied-Reference Handbook, Fourth Edition, National Council of Examiners for Engineering and Surveying, Clemson, USA, 2000, pp. 5. (Online). Available:https://www.slideshare.net/alcemirhacker/fundamentals-of-engineering-reference-handbook (Accessed: 10- Oct.- 2017).
[31] D. Turcic, and A. Midha, “Dynamic Analysis of Elastic Mechanism Systems. Part I: Applications, Measurement and Control”, Journal of Dynamic Systems, Measurements and Control, vol. 106, no. 4, pp. 249-254, 1984.
[32] D. Turcic, A. Midha, and J. Bosnik, “Dynamic Analysis of Elastic Mechanism Systems. Part II: Experimental Results Measurement and Control”, Journal of Dynamic Systems, Measurements and Control, vol. 106, no. 4, pp. 255-260, 1984.
[33] S. Dwivedy, and P. Eberhard, “Dynamic Analysis of Flexible Manipulators, A Literature Review”, Journal of Mechanism and Machine Theory, vol. 41, no. 7, pp. 749-777, 2006.
[34] V. Arnold, in: Mathematical methods of classical mechanics, Second Edition, Springer-Verlag New York Inc, USA, 1978, pp. 65-67.
[35] C. Boyle, L. Howell, S. Magleby, and M. Evans, “Dynamic Modeling of Compliant Constant-Force Compression Mechanisms”, Scholar-Archive, pp. 1-22, 2003. (Online). Available: http://scholarsarchive.byu.edu/facpub/465/?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages (Accessed: 16- Oct.- 2017).
[36] S. Moaveni, in: Finite Element Analysis Theory and Application with ANSYS, 3rd Edition, Prentice-Hall Inc., New Jersey, USA, 1999, pp. 332-336. (Online). Available: https://www.academia.edu/17719665/FINITE_ELEMENT_ANALYSIS (Accessed: 16- Oct.- 2017).
[37] M. Lalanne and G. Ferraris, in: Handbook of Rotodynamics Prediction in Engineering, Wiley, London, UK, 1997, pp.95-187.
[38] J. Mendoza, C. Palacios Montúfar, and J. Campos, “Analytical Synthesis for Four-Bar Mechanisms Used In a Pseudo-Equatorial Solar Tracker”, Journal of Ingeniería & Investigación, vol. 33, no. 3, pp55-60, 2013.
Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007