Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10003520
Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.
Digital Article Identifier (DAI):

References:

[1] D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function”, Cells, 166 (2): 281–297 (2004).
[2] X. Dai et al., “Computational analysis of miRNA targets in plants: current status and challenges”, Briefings Bioinformatics, 12(2), 115-212 (2010).
[3] Y. S. Lee and A. Dutta, “MicroRNAs in cancer”, Annu Rev Pathol, 4, 199-227 (2009).
[4] SM. Hammonad, “microRNA detection comes of age”, Nat Methods, 3(1), 12-13 (2006).
[5] C. G. Liu, “An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissue”, Proc Natl Acad Sci USA, 101(26), 9740-9744 (2004).
[6] M. V. Iorio et al., “MicroRNA gene expression deregulation in human breast cancer”, Cancer Res, 65(16), 7065-7070 (2005).
[7] H. He et al., “The role of microRNA genes in papillary thyroid carcinoma”, Proc Natl Acad Sci USA, 102(52), 19075-19080 (2005).
[8] G. A. Calin, “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers”, Proc Natl Acad Sci USA, 101(9), 2999-3004 (2004).
[9] M. V. Iorio et al., “MicroRNA gene expression deregulation in human breast cancer”, Cancer Res, 65(16), 7065-7070 (2005).
[10] S. Volinia et al., “Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA”, Proc Natl Acad Sci USA, 109(8), 111-114 (2012).
[11] N. Yanaihara et al., Unique microRNA molecular profiles in lung cancer diagnosis and prognosis, Cancer Cell, 9, 189-198 (2006).
[12] Y. Yang et al., The role of microRNA in human lung squamous cell carcinoma, Caner Genet. Cytogenet, 200, 127-133 (2010).
[13] A. Izzotti et al., Chemoprevention of cigarette smoke-induced alterations of MicroRNA expression in rat lungs, Cancer Prev.Res. (Phila, PA), 3, 62-72 (2010).
[14] A. Izztti et al., Modulation of microRNA expression by budesonide phenethyl isothiocyanate and cigarette smoke in mouse liver and lung, Carcinogenesis, 31, 894-901 (2010).
[15] G. Malgorzata et al., MicroRNA-Role in Lung Cancer, Diseas Markers, Article ID 218169, 13 (2014).
[16] A. J. Enright et al., “MicroRNA targets in Drosophila”, Genome Biol, 5(R1) (2003).
[17] B. John et al., “MicroRNA Targets”, PLos Biol, 2(11), e363 (2004).
[18] M. Kertesz et al., “The role of site accessibility in microRNA target recongnition”, Nat. Genet, 39(10), 1278-1284 (2007).
[19] K. Nilubon et al., “Identification of Lung cancer associated protein by Molecular Complex Detection Analysis”, IBBB 2015, Taiwan, Jan. 24- 25 (2015).
[20] A. Bairoch et al., “The Universal Protein Resource (UniProt)”, Nucl.Acids Res, 33, D154-D159 (2005).
[21] G. J. Sam et al., “miRBase: microRNA sequences, targets and gene nomenclature”, Nucl.Acids Res, 34, D140-D144 (2005).
[22] DH. Sheng et al., “miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions”, Nucl. Acids Res, 42(D1), D78-D85 (2014).
Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007