Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29209

Select areas to restrict search in scientific publication database:
Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles
This paper presents a method for determining all of the co-prime right angle triangles in the Euclidean field by looking at the intersection of the Pythagorean and Platonic right angle triangles and the corresponding lattice that this produces. The co-prime properties of each lattice point representing a unique right angle triangle are then considered. This paper proposes a conjunction between these two ancient disparaging theorists. This work has wide applications in information security where cryptography involves improved ways of finding tuples of prime numbers for secure communication systems. In particular, this paper has direct impact in enhancing the encryption and decryption algorithms in cryptography.
Digital Object Identifier (DOI):


[1] B. Berggren. Pytagoreiska trianglar (in Swedish). Tidskrift fo¨r elementa¨r mamematik, fysik och kemi 17: 129–139, 1934.
[2] S. Kak, and M. Prabhu, Cryptographic applications of primitive Pythagorean triples. Cryptologia, 38:215–222, 2014.
[3] R. L. Rivest, Cryptography. In J. Van Leeuwen. Handbook of Theoretical Computer Science. 1. Elsevier, 1990.
[4] Frank R. Bernhart, and H. Lee Price, Pythagoras' garden, revisited, Australian Senior Mathematics, 26(1):29-40, 2012.
[5] E. Maor. The Pythagorean theorem, a 4,000-year history. Princeton University Press. Princeton, New Jersey, 2007.
[6] H. M. Stark, An Introduction to Number Theory. Cambridge, MA: MIT Press, 1994.
[7] W. Sierpinski. Pythagorean triangles, Scripta Mathematica Studies, No. 9, Yeshiva University, New York, 1962.
[8] R. A. Saunders, and T. Randall, The family tree of the Pythagorean triplets revisited, Mathematical Gazette, JSTOR, 78: 190–193, 1994.
[9] J. Rukavicka, Dickson's Method for Generating Pythagorean Triples Revisited, European Journal of Pure and Applied Mathematics ISSN 1307-5543, 6(3): 363-364, 2013.
[10] Euclid. (1908) 1956. The thirteen books of Euclid's Elements. Translated from the text of Heiberg, with introduction and commentary by Sir Thomas L. Heath. Second edition. Three volumes. New York: Dover Publications.
[11] A. Hall. Genealogy of Pythagorean Triads, The Mathematical Gasette, 54(390):377–379, 1970.
[12] T. Roy, and F. J. Soni, A Direct Method To Generate Pythagorean Triples And Its Generalization To Pythagorean Quadruples And n-tuples, arXiv:1201.2145 (math.NT), 1-11, 2012
[13] A. Overmars, and L. Ntogramatzidis, A new parameterisation of Pythagorean triples in terms of odd and even series, Cornell University, arXiv:1504.03163 (math.HO), 1-9, 2015
[14] A. J. Menezes, P. C. van Oorschot, and S. Vanstone, A. Handbook of Applied Cryptography. CRC Press, USA, 1996.
[15] N. Biggs, Codes: An introduction to Information Communication and Cryptography. Springer. p. 171, 2008.
[16] R. L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM. Association for Computing Machinery. 21 (2): 120–126, 1978.
[17] A. Menezes, P. Van Oorschot, S. Vanstone, Handbook of Applied Cryptography, Boca Raton, FL, CRC Press, Taylor & Franscis Group, 1997.
Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007