Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10009193
Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.
Digital Article Identifier (DAI):

References:

[1] D. Jacquemain et al., “Nuclear power reactor core melt accidents. Current State of Knowledge” (2015).
[2] L. Herranz et al., “In-containment source term: key insights gained from a comparison between the PHEBUS-FP programme and the US-NRC NUREG-1465 revised source term.” Progress in Nuclear Energy 52.5 (2010), pp: 481-486.
[3] G. Schumacher et al., “Modeling cesium behavior in nuclear reactor fuels at high temperatures”,Journal of Nuclear Materials 130 (1985), pp: 21-35.
[4] A-C Grégoire et al., “Studies on the role of molybdenum on iodine transport in the RCS in nuclear severe accident conditions.”, Annals of Nuclear Energy 78 (2015): 117-129.
[5] P. Chatelard, et al. “Main modelling features of the ASTEC V2.1 major version.”, Annals of Nuclear Energy 93 (2016), pp: 83-93.
[6] J. Cox, D. Wagman and V. Medvedev, in CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., 1984, p. 1.
[7] M. W. Chase, “NIST—JANAF Thermochemical Tables (Journal of Physical and Chemical Reference Data Monograph No. 9).” American Institute of Physics (1998).
[8] D. R. Lide, “CRC Handbook of Chemistry and Physics, 84th Edition”, CRC PRESS, Dordrecht, 2003-2004, p. 842.
[9] M. J. E. A. Frisch et al. “Gaussian 09, revision a. 02, gaussian.” Inc., Wallingford, CT 200 (2009).
[10] J. Tao et al. “Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids.” Physical Review Letters 91.14 (2003), pp: 146401.
[11] O. A. Vydrov et al., “Scaling down the Perdew-Zunger Self-Interaction Correction in Many-Electron Regions”, Journal of Chemical Physics, 2006, 124, pp: 094108.
[12] F. Weigend et al., ”RI-MP2: optimized auxiliary basis sets and demonstration of efficiency.”, Chemical Physics Letters 294.1-3 (1998), pp: 143-152.
[13] F. Weigend et al., “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy.”, Physical Chemistry Chemical Physics 7.18 (2005), pp: 3297-3305.
[14] T. Leininger et al., “The accuracy of the pseudopotential approximation: Non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X= K, Rb, Cs).” Chemical physics letters 255.4-6 (1996): 274-280.
[15] D. Andrae et al., “Energy-adjusted ab initio pseudopotentials for the second and third row transition elements”. Theoretica Chimica Acta, 77(2), ((1990), pp: 123-141.
[16] C. Hättig and F. Weigend,. “CC2 excitation energy calculations on large molecules using the resolution of the identity approximation.”, The Journal of Chemical Physics 113.13 (2000), pp: 5154-5161.
[17] C. Hättig et al., “Distributed memory parallel implementation of energies and gradients for second-order Møller–Plesset perturbation theory with the resolution-of-the-identity approximation.” Physical Chemistry Chemical Physics 8.10 (2006), pp: 1159-1169.
[18] H.-J. Werner and M. Schütz, “An efficient local coupled cluster method for accurate thermochemistry of large systems.” The Journal of Chemical Physics 135.14 (2011), pp: 144116.
[19] P. J. Knowles et al., “Coupled cluster theory for high spin, open shell reference wave functions.” The Journal of Chemical Physics 99.7 (1993), pp: 5219-5227.
[20] P. J. Knowles et al.,"Erratum: “Coupled cluster theory for high spin, open shell reference wave functions” (J. Chem. Phys. 99, 5219 (1993))." The Journal of Chemical Physics 112.6 (2000), pp: 3106-3107.
[21] D. Figgen et al. “Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data.” Chemical Physics 311.1-2 (2005), pp: 227-244.
[22] D. Feller, “Application of systematic sequences of wave functions to the water dimer.” The Journal of Chemical Physics 96.8 (1992), pp: 6104-6114.
[23] D. Feller, “The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water.” The Journal of Chemical Physics 98.9 (1993), pp: 7059-7071.
[24] T. Helgaker et al., “Basis-set convergence of correlated calculations on water.” The Journal of Chemical Physics 106.23 (1997), pp: 9639-9646.
Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007