Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29404


Select areas to restrict search in scientific publication database:
2506
Simulation of Fluid Flow and Heat Transfer in Inclined Cavity using Lattice Boltzmann Method
Abstract:
In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid motion inside the cavity. Inclination of the cavity causes horizontal and vertical components of velocity to be affected by buoyancy force. To include this effect, calculation procedure of macroscopic properties by LBM is changed and collision term of Boltzmann equation is modified. A computer program is developed to simulate this problem using BGK model of lattice Boltzmann method. The effects of the variations of Richardson number and inclination angle on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles, stream function contours and isotherms. It is concluded that LBM has good potential to simulate mixed convection heat transfer problems.
Digital Object Identifier (DOI):

References:

[1] Patil D.-V., Lakshmisha K.-N., Rogg B., Lattice Boltzmann simulation of lid-driven flow in deep cavities, Computers & Fluids 35 (2006) 1116- 1125.
[2] D-Orazio A., Corcione M., Celata G.-P., Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition, Int. J. of Thermal Sciences 43 (2004) 575-586.
[3] Chen S., Doolen G., Lattice Boltzmann method for fluid flows, Annual Rev. Fluid Mech. 30 (1998) 329-364.
[4] Luo L., The lattice gas and lattice Boltzmann methods: Past, present, and future, Appl. Comput. Fluid Dyn, Beijing (2000) 52-83.
[5] Succi S., The lattice Boltzmann equation for fluid dynamics and beyond, Oxford, Oxford University Press (2001).
[6] Qian Y., Humie`res D., Lallemand P., Lattice BGK models for Navier- Stokes equation, Europhys. Lett. 17 (1992) 479-484.
[7] He X., Luo L., Theory of the lattice Boltzmann equation: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. 56 (1997) 6811-6817.
[8] Yu D., Mei R., Luo L., Shyy W., Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences 39 (2003) 329-367.
[9] Guo Zh., Shi B., Wang N., Lattice BGK model for incompressible Navier-Stokes equation, J. of Computational Physics 165 (2000) 288- 306.
[10] Hou Sh., Zou Q., Chen Sh., Doolen G.-D., Cogley A.-C., Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys. 118 (1995) 329-347.
[11] Wu J.-S., Shao Y.-L., Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme, Int. J. Numer. Meth. Fluids 46 (2004) 921-937.
[12] He X., Chen Sh., Doolen G.-D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. of Computational Physics 146 (1998) 282-300.
[13] Eggels J.-G.-M., Somers J.-A., Numerical simulation of free convective flow using the lattice Boltzmann scheme, Int. J. Heat and Fluid Flow 16 (1995) 357-364.
[14] Dixit H.-N., Babu V., Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. of Heat and Mass Transfer 49 (2006) 727-739.
[15] Barrios G., Rechtman R., Rojas J., Tovar R., The lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall, J. Fluid Mech. 522 (2005) 91-100.
[16] Kao P.-H., Yang R.-J., Simulating oscillatory flows in Rayleigh Benard convection using the lattice Boltzmann method, Int. J. of Heat and Mass Transfer 50 (2007) 3315-3328.
[17] Bhatnagar P. L., Gross E. P., Krook M., A model for collision process in gases. I. Small amplitude processes in charged and neutral onecomponent system, Phys. Rev. 94 (1954) 511-1954.
[18] Cercignani C., The Boltzmann equation and its applications, Applied Mathematical Sciences, Springer-Verlag, New York 61 (1988).
[19] He X., Luo L., A priori derivation of the lattice Boltzmann equation, Phys. Rev. E 55 (6) (1997) R6333-R6336.
[20] Zou Q., He X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids 9 (6) (1997) 1591-1596.
[21] Ziegler DP., Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 71 (1993) 1171-1177.
[22] Ginzbourg I., Alder PM., Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J Phys. II France 4 (1994) 191-214.
[23] D-Orazio A., Succi S., Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions, Future Generation Computer Systems 20 (2004) 935-944.
[24] Kuznik F., Vareilles J., Rusaouen G., Krauss G., A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity, Int. J. of Heat and Fluid Flow 28 (2007) 862-870.
[25] Iwatsu R., Hyun J.-M., Kuwahara K., Mixed convection in a driven cavity with a stable vertical temperature gradient, Int. J. Heat Mass Transfer 36 (1993) 1601-1608.
[26] Prasad Y.-S., Das M.-K., Hopf bifurcation in mixed convection flow inside a rectangular cavity, Int. J. of Heat and Mass Transfer 50 (2007) 3583-3598.
Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007