Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10003749
Statistical Feature Extraction Method for Wood Species Recognition System
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.
Digital Article Identifier (DAI):

References:

[1] P. K. B. Menon, A. Sulaiman, L. S. Choon, “Structure and identification of Malayan woods,” Malayan Forest Records No 25, Forest Research Institute Malaysia, Malaysia. (1993).
[2] J. Y. Tou, P. Y. Lau, Y. H. Tay. “Computer vision based wood recognition system.” Proceedings of International workshop on advanced image technology. 16. (2007).
[3] J. Y. Tou, Y. H. Tay, P. Y. Lau, “One-dimensional grey-level cooccurrence matrices for texture classification,” International symposium on information technology. pp 1–6. (2008).
[4] M. Khalid, Y. L. Lew, R. Yusof, and M. Nadaraj, “Design of an intelligent wood species recognition system,” Simulation Systems, Science & Technology. 9(3), pp. 9-19. (2008).
[5] Y. B. Tang, C. Cai, F. F. Zhao, “Wood Identification Based on PCA, 2DPCA and (2D) 2PCA”. Fifth International Conference on Image and Graphics. 784-789. (2009).
[6] R. Bremanath, B. Nithiya, and R. Saipriya, “Wood species recognition using GLCM and correlation.” International Conference on Advances in Recent Technologies in Communication and Computing. pp.615-619. (2009).
[7] P. L., Filho, L. S. Oliveira, Jr A. S. Britto, R. Sabourin, “Forest species recognition using color-based features.” 20th International Conference on Pattern Recognition. 4178–4181 (2010).
[8] F. Peng, J. T. Li, M. Long, “Identification of natural images and computer-generated graphics based on statistical and textural features.” Forensic Sciences. 60(2): 435-443. (2015).
[9] H. Yan and M. M. Gupta. “Guest editorial: Special section on neural networks and fuzzy logic for imaging applications,” Electronic Imaging. 6(3). (1997).
[10] Randy P. Broussard, Rober W. Ives. “Improving identification accuracy on low resolution and poor quality iris images using an artificial neural network-based matching metric.” Electronic Imaging. 20(1), (2011).
[11] B. O. Tranta, M. Sorger, P. O’Leary. “Thermographic crack detection and failure classification,” Electronic Imaging. 19(3). (2010).
[12] Tulio C. S. S. Andre’, R.M. Rangayyan. “Classification of breast masses in mammograms using neural networks with shape, edge sharpness and texture features,” Electronic Imaging. 15(1). (2005).
[13] M. Petrou, G.S. Sevilla, “Dealing with texture.” John Wiley & Sons Ltd. West Sussex, England (2006).
Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007