Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
References:
[1] C. P. Wei, Y. H. Lee and C. M. Hsu, “Empirical comparison of fast partitioning-based clustering algorithms for large data sets”, Expert Systems with Applications, vol. 24, no. 4, pp. 351-361, 2003.
[2] M. J. Shaw, C. Subramaniam, G. W. Tan and M. E. Welge, “Knowledge management and data mining for marketing”, Decision Support Systems, vol. 1, no. 31, pp. 128-138, 2001.
[3] S. H. Liao, “Knowledge management technologies and applications -literature review from 1995 to 2002”, Expert Systems with Applications, vol. 25, no. 2, pp. 157-167, 2003.
[4] E. W. M. Ma and T. W. S. Chow, “A new shifting grid clustering algorithm”, Pattern Recognition, vol. 37, no. 3, pp. 503-513, 2004.
[5] J. A. McCarty and M. Hastak, “Segmentation approaches in data mining: A comparison of RFM, CHAID and Logistic Regression”, Journal of Business Research, vol. 60, no. 6, pp. 656-666, 2009.
[6] G. G. Emel, C. Taskin and S. Kilicarslan, “An analysis at the process of steel production by using artificial neural network”, Journal of Dokuz Eylül University, vol. 5, no. 1, pp. 206-207, 2004.
[7] C. Rygielski, J. C. Wang and D. C. Yen, “Data mining techniques for customer relationship management”, Technology in Society, vol. 24, no. 4, pp. 488-498, 2002.
[8] H. M. Moshkovich, A. I. Mechitov and D. L. Olson, “Rule induction in data mining: Effect of ordinal scales”, Expert Systems with Applications, vol. 22, no. 4, pp. 303-304, 2002.
[9] C. Budayan, I. Dikmen ve M. T. Birgonul, “Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy c-means method for strategic grouping”, Expert Systems with Applications, vol. 36, no. 9, pp. 117-127, 2009.
[10] R. J. Kuo, L. M. Ho and C. M. Hu, “Cluster analysis in industrial market segmentation through artificial neural network”, Computers & Industrial Engineering, vol. 42, no. 4, pp. 393-403, 2002.
[11] A. Likas, N. Vlassis and J. J. Verbeek, “The global k-means clustering algorithm”, Pattern Recognition, vol. 36, no. 2, pp. 451-461, 2003.
[12] C. H. Hsu, “Data mining to improve industrial standards and enhance production and marketing: An empirical study in apparel industry”, Expert Systems with Applications, vol. 36, no. 3, pp. 504-514, 2009.
[13] B. Hammer, A. Micheli, A. Sperduti and M. Strickert, “Recursive self-organizing network models”, Neural Networks, vol. 17, no. 10, pp. 1061-1071, 2004.
[14] D. G. Roussinov and H. Chen, “Document clustering for electronic meetings: An experimental comparison of two techniques”, Decision Support Systems, vol. 27, no. 2, pp. 70-80, 1999.
[15] B. Aydogan, B. Ayat, M. N. Ozturk, Y. Yuksel and E. O. Cevik, “Modeling of water level changes in the Bosphorus”, The 6th National Coastal Engineering Symposium, Izmir, Turkey, 2007, pp. 271-278.
[16] M. L. Koc, C. E. Balas and A. Arsla, “Preliminary design of artificial neural networks of stone filled breakwaters”, IMO Technical Journal, vol. 225, no. 11, pp. 3351-3375, 2004.
[17] D. F. Milliea, G. R. Weckmanc, W. A. Y. IId, J. E. Iveye, D. P. Friesf, E. Ardjmandc and G. L. Fahnenstielb, “Coastal ‘big data’ and nature-inspired computation: Prediction potentials, uncertainties, and knowledge derivation of neural networks for an algal metric”, Coastal and Shelf Science, vol. 125, pp. 57–67, 2013.
[18] H. C. Seyffert and A. W. Troesch, “Data mining Pt. Reyes Buoy for rare wave groups”, Journal of Offshore Mechanics and Arctic Engineering, vol. 138, no. 1, pp. 1-8, 2015.
[19] P. A. Conrads and E. A. Roehl, “The use of data-mining techniques for developing effective decision support systems: a case study of simulating the effects of climate change on coastal salinity intrusion”, The Geological Society of London, vol. 408, 2015.
[20] C. H. Chang, C. C. Liu, H. W. Chung, L. J. Lee and W. C. Yang, “Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions”, Applied Optics, vol. 53, no. 4, pp. 605-617, 2014.
[21] S. Gao, “Shallow water depth inversion based on data mining models”, B.S., China University of Petroleum (East China), 2013.
[22] W. Huang, C. Murray, N. Kraus and J. Rosati, “Development of a regional neural network for coastal water level predictions”, Ocean Engineering, vol. 30, pp. 2275–2295, 2003.
[23] O. Makarynskyya, A. A. Pires-Silvab, D. Makarynskaa and C. Ventura-Soaresc, “Artificial neural networks in wave predictions at the west coast of Portugal”, Computers & Geosciences, vol. 31, pp. 415–424, 2005.
[24] L. H. Holthuijsen, “Waves in Oceanic and Coastal Waters”, Cambridge University Press, pp. 27-28.