Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
12544
The Homotopy Analysis Method for Solving Discontinued Problems Arising in Nanotechnology
Abstract:
This paper applies the homotopy analysis method method to a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. Comparison of the approximate solution with the exact one reveals that the method is very effective.
Digital Article Identifier (DAI):

References:

[1] S. Abbasbandy, Soliton solutions for the 5th-order KdV equation with the homotopy analysis method, Nonlinear Dyn 51. (2008) 83-87.
[2] T. Hayat, T. Javed, M. Sajid, Analytic solution for rotating ¤ow and heat transfer analysis of a third-grade ¤uid, Acta Mech. 191 (2007) 219-29.
[3] J.H. He, Y.Q. Wan, L. Xu, Nano-effects, quantum-like properties in electrospun nano£bers, Chaos Solitons Fractals 33 (2007) 26-37.
[4] J.H. He, Y.Y. Liu, L. Xu, et al., Micro sphere with nanoporosity by electrospinning, Chaos Solitons Fractals 32 (2007) 1096-1100.
[5] J.H. He, S.D. Zhu, Differential-difference model for nanotechnology, J. Phys. Conf. Ser. 96 (2008) 012189.
[6] M.S. El Naschie, Deterministic quantum mechanics versus classical mechanical indeterminism, Int. J. Nonlinear Sci. 8 (1) (2007) 5-10.
[7] M.S. El Naschie, A review of applications and results of E-in£nity theory, Int. J. Nonlinear Sci. 8 (1) (2007) 11-20.
[8] M.S. El Naschie, Probability set particles, Int. J. Nonlinear Sci. 8 (1) 117-119.
[9] M.S. El Naschie, Nanotechnology for the developing world, Chaos Solitons Fractals 30 (2006) 769-773.
[10] S.D. Zhu, Exp-function method for the Hybrid-Lattice system, Int. J. Nonlinear Sci. 8 (3) (2007) 461-464.
[11] S.P. Zhu, An exact and explicit solution for the valuation of American put options, Quantitative Finance. 6 (2006) 229-242.
[12] S.D. Zhu, Exp-function method for the discrete mKdV lattice, Int. J. Nonlinear Sci. 8 (3) (2007) 465-469.
[13] S.D. Zhu, Discrete (2+1) dimensional Toda lattice equation via Expfunction method, Phys. Lett. A 372 (2008) 654-657.
[14] S.D. Zhu, Yu-ming Chu, Song-liang Qiu. The homotopy perturbation method for discontinued problems arising in nanotechnology, Computers and Mathematics with Applications (2009), doi:10.1016/j.camwa.2009.03.048.
[15] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[16] S.J. Liao, Beyond perturbation: introduction to the homotopy analysis method, CRC Press, Boca Raton: Chapman & Hall; 2003.
[17] S.J. Liao, On the homotopy anaylsis method for nonlinear problems, Appl Math Comput 2004;147:499513.
[18] S.J. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Appl Math Comput,169 (2005) 11861194.
[19] S.J. Liao, A new branch of solutions of boundary-layer ¤ows over an impermeable stretched plate, Int J Heat Mass Transfer ,48 (2005) 25292539.
[20] S.J. Liao, A uniformly valid analytic solution of two-dimensional viscous ¤ow over a semi-in£nite ¤at plate, J.Fluid Mech. 385 (1999) 101128; MR1690937 (2000a:76057).
[21] Y. Liu, J.H. He, Bubble electrospinning for mass production of nano£bers, Int. J. Nonlinear Sci. 8 (2007) 393-396.

Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007