Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10006149
Thermal Effect on Wave Interaction in Composite Structures
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.
Digital Article Identifier (DAI):

References:

[1] A. Noor and U. Burton, “Computational models for high temperature multilayered composite plates and shells,” Appl Mech Rev, vol. 45, no. 10, pp. 419–446, 1992.
[2] Y. Dimitrienko, “Thermomechanical behaviour of composite materials and structures under high temperature: 1. materials, composites,” Part A. Applied Science and Manufacturing, vol. 28, pp. 463–471, 1997.
[3] ——, “Thermomechanical behaviour of composite materials and structures under high temperature: 2. structures, composites,” Part A. Applied Science and Manufacturing, vol. 28, pp. 453–461, 1997.
[4] G. McNally, M. McCourt, and P. Spedding, “The effect of rapid high temperature excursions on the moisture absorption and dynamic mechanical properties of carbon fibre epoxy composite materials, development in chemical engineering and mineral processing,” Asia-Pacific Journal of Chemical Engineering, vol. 12, no. 1, pp. 169–178, 2004.
[5] O. Putkis, D. R. P., and C. A. J., “The influence of temperature variations on ultrasonic guided waves in anisotropic cfrp plates,” Ultrasonic, vol. 60, pp. 109–116, 2015.
[6] W. J. Zhou and M. N. Ichchou, “Wave scattering by local defect in structural waveguide through wave finite element method,” Structural Health Monitoring, vol. 10, no. 4, pp. 335–349, 2011.
[7] J. Renno and B. Mace, “Calculation of reflection and transmission coefficients of joints using a hybrid element/wave and finite element approach,” Journal of Sound and Vibration, vol. 332, pp. 2149–2164, 2013.
[8] ——, “Vibration modelling of structural networks using a hybrid finite element/wave and finite element approach,” Wave Motion, vol. 51, no. 4, pp. 566–580, 2014.
[9] E. Manconi and B. Mace, “Modelling wave propagation in two-dimensional structures using finite element analysis,” ISVR Technical Memorandum, vol. 318, no. 4–5, pp. 884–902, 2008.
[10] D. Chronopoulos, B. Troclet, M. Ichchou, and J. Laine, “A unified approach for the broadband vibroacoustic response of composite shells,” Composites Part B: Engineering, vol. 43, no. 4, pp. 1837–1846, 2012.
[11] D. Chronopoulos, B. Troclet, O. Bareille, and M. Ichchou, “Modeling the response of composite panels by a dynamic stiffness approach,” Composite Structures, vol. 96, pp. 111–120, 2013.
[12] D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille, “Efficient prediction of the response of layered shells by a dynamic stiffness approach,” Composite Structures, vol. 97, pp. 401–404, 2013.
[13] ——, “Predicting the broadband vibroacoustic response of systems subject to aeroacoustic loads by a krylov subspace reduction,” Applied Acoustics, vol. 74, no. 12, pp. 1394–1405, 2013.
[14] ——, “Thermal effects on the sound transmission through aerospace composite structures,” Aerospace Science and Technology, vol. 30, no. 1, pp. 192–199, 2013.
[15] ——, “Predicting the broadband response of a layered cone-cylinder-cone shell,” Composite Structures, vol. 107, no. 1, pp. 149–159, 2014.
[16] ——, “Computing the broadband vibroacoustic response of arbitrarily thick layered panels by a wave finite element approach,” Applied Acoustics, vol. 77, pp. 89–98, 2014.
[17] V. Polenta, S. Garvey, D. Chronopoulos, A. Long, and H. Morvan, “Optimal internal pressurisation of cylindrical shells for maximising their critical bending load,” Thin-Walled Structures, vol. 87, pp. 133–138, 2015.
[18] T. Ampatzidis and D. Chronopoulos, “Acoustic transmission properties of pressurised and pre-stressed composite structures,” Composite Structures, vol. 152, pp. 900–912, 2016.
[19] I. Antoniadis, D. Chronopoulos, V. Spitas, and D. Koulocheris, “Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element,” Journal of Sound and Vibration, vol. 346, no. 1, pp. 37–52, 2015.
[20] D. Chronopoulos, M. Collet, and M. Ichchou, “Damping enhancement of composite panels by inclusion of shunted piezoelectric patches: A wave-based modelling approach,” Materials, vol. 8, no. 2, pp. 815–828, 2015.
[21] D. Chronopoulos, I. Antoniadis, M. Collet, and M. Ichchou, “Enhancement of wave damping within metamaterials having embedded negative stiffness inclusions,” Wave Motion, vol. 58, pp. 165–179, 2015.
[22] D. Chronopoulos, “Design optimization of composite structures operating in acoustic environments,” Journal of Sound and Vibration, vol. 355, pp. 322–344, 2015.
[23] M. Ben Souf, D. Chronopoulos, M. Ichchou, O. Bareille, and M. Haddar, “On the variability of the sound transmission loss of composite panels through a parametric probabilistic approach,” Journal of Computational Acoustics, vol. 24, no. 1, 2016.
[24] D. Chronopoulos, “Wave steering effects in anisotropic composite structures: Direct calculation of the energy skew angle through a finite element scheme,” Ultrasonics, vol. 73, pp. 43–48, 2017.
[25] B. R. Mace, D. Duhamel, M. J. Brennan, and L. Hinke, “Finite element prediction of wave motion in structural waveguides,” The Journal of the Acoustical Society of America, vol. 117, no. 5, pp. 2835–2843, 2005.
[26] J. Doyle, Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms. Springer, 1997.
[27] M. Lowe, C. P., J. Kao, and O. Diligent, “The low frequency reflection characteristics of the fundamental antisymmetric lamb wave a0 from a rectangular notch in a plate,” The Journal of the Acoustical Society of America, vol. 112, no. 6, pp. 2612–2622, 2002.
Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007