Scholarly Research Excellence

Digital Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29137

Select areas to restrict search in scientific publication database:
Using Artificial Neural Network Algorithm for Voltage Stability Improvement
This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.
Digital Object Identifier (DOI):


[1] P. Kundur, “Power System Stability and Control”, New York: Mc Graw Hill, 1994.
[2] S. Chakrabarty, B. Jeyasurya, “Online voltage stability monitoring using Artificial Neural Network”, Power Engineering, 2004 LESCOPE-04 Large Engineering System Conference, pp-71-75, 2008.
[3] C. A. Jimenez, C. A. Castro, “Voltage stability security margin assessment via Artificial Neural Network”, Power Tech. June 2005 IEEE Russia, pp-27-30, 2005.
[4] L. D. Arya and et al. “Static voltage Stability Enhancement Using Eigen Sensitivities”, International journal of Electrical Power and Energy System, February 28, PP. 164-170, 2005.
[5] H. Demuch and M. Beale, “Neural network toolbox manual for MATLAB”, User's Guide, Version 9, 2011.
[6] F. M. Elkady and A. Y. Abdelaziz A. Y., “Voltage Stability Assessment of Electrical Power Systems Using Artificial Neural Networks”, Journal of Engineering and Applied Science, Faculty of Engineering, Cairo University, Vol. 48, No. 4, pp. 727-743, 2005.
[7] Z. S. Elrazaz, I. Yassin, A. Hegazy and H. Mostafa , “Voltage Stability Indicators Via Artificial Neural Networks”, Proceedings of the Sixth Middle East Power Systems Conference MEPCON’98, Mansoura, Egypt, Dec. 2009.
[8] V. Balamourougan, T. S. Sidhu and M. S. Sachdev, “Technique for online prediction of voltage collapse,” IEE Proc.-Gener. Transm. Distrb. Vol. 151, pp.454-460, July 2004.
[9] E.A. Mohamed E.A., “Power System Steady State Voltage Stability Assessment”, Proceedings of the Seventh Middle East Power Systems Conference MEPCON’, Cairo, Egypt, pp. 467-474, 2006.
[10] M. H. Haque, “Online monitoring of maximum permissible loading of a power system within voltage stability limits,” IEE Proc.-Gener. Transm. Distrb. Vol. 150, no. 1, pp. 107-112, Jan. 2003.
[11] A.C. Andrade and et al., 2006, “FSQV and Artificial Neural Networks to voltage Stability Assessment”, IEEE PES Transmission and Distribution Conference and Exposition Latin America, Venezuela.
[12] M. Nizam, A. Mohamed and A. Hussain, “Performance evaluation of voltage stability indices for dynamic voltage collapse prediction,” Journal of Applied Science, vol. 6, no.5, pp. 1104-1113, 2006.
[13] E.E. Souza Lima and L.F. Fernandes, “Assessing Eigen Value Sensitivities”, IEEE Transactions on Power Systems, vol 15, no 1, pp. 299-305, 2001.

Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007