Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:
10006148
Wave Interaction with Defects in Pressurized Composite Structures
Abstract:
A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint.
Digital Article Identifier (DAI):

References:

[1] S. Kessler, S. Spearing, and C. Soutis, “Damage detection in composite materials using lamb wave methods,” Smart Materials and Structures, vol. 11, pp. 269–278, 2002.
[2] O. C. Zienkiewicz and R. L. Taylor, The finite element method: Solid mechanics. Butterworth-heinemann, 2000, vol. 2.
[3] B. R. Mace, D. Duhamel, M. J. Brennan, and L. Hinke, “Finite element prediction of wave motion in structural waveguides,” The Journal of the Acoustical Society of America, vol. 117, no. 5, pp. 2835–2843, 2005.
[4] J.-M. Mencik and M. Ichchou, “Multi-mode propagation and diffusion in structures through finite elements,” European Journal of Mechanics-A/Solids, vol. 24, no. 5, pp. 877–898, 2005.
[5] D. Chronopoulos, B. Troclet, O. Bareille, and M. Ichchou, “Modeling the response of composite panels by a dynamic stiffness approach,” Composite Structures, vol. 96, pp. 111–120, 2013.
[6] E. Manconi and B. Mace, “Modelling wave propagation in two-dimensional structures using a wave/finite element technique,” ISVR Technical Memorandum, 2007.
[7] D. Chronopoulos, B. Troclet, M. Ichchou, and J. Laine, “A unified approach for the broadband vibroacoustic response of composite shells,” Composites Part B: Engineering, vol. 43, no. 4, pp. 1837–1846, 2012.
[8] D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille, “Predicting the broadband response of a layered cone-cylinder-cone shell,” Composite Structures, vol. 107, no. 1, pp. 149–159, 2014.
[9] ——, “Computing the broadband vibroacoustic response of arbitrarily thick layered panels by a wave finite element approach,” Applied Acoustics, vol. 77, pp. 89–98, 2014.
[10] V. Polenta, S. Garvey, D. Chronopoulos, A. Long, and H. Morvan, “Optimal internal pressurisation of cylindrical shells for maximising their critical bending load,” Thin-Walled Structures, vol. 87, pp. 133–138, 2015.
[11] T. Ampatzidis and D. Chronopoulos, “Acoustic transmission properties of pressurised and pre-stressed composite structures,” Composite Structures, vol. 152, pp. 900–912, 2016.
[12] W. Zhou, M. Ichchou, and J. Mencik, “Analysis of wave propagation in cylindrical pipes with local inhomogeneities,” Journal of Sound and Vibration, vol. 319, no. 1, pp. 335–354, 2009.
[13] I. Antoniadis, D. Chronopoulos, V. Spitas, and D. Koulocheris, “Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element,” Journal of Sound and Vibration, vol. 346, no. 1, pp. 37–52, 2015.
[14] D. Chronopoulos, M. Collet, and M. Ichchou, “Damping enhancement of composite panels by inclusion of shunted piezoelectric patches: A wave-based modelling approach,” Materials, vol. 8, no. 2, pp. 815–828, 2015.
[15] D. Chronopoulos, I. Antoniadis, M. Collet, and M. Ichchou, “Enhancement of wave damping within metamaterials having embedded negative stiffness inclusions,” Wave Motion, vol. 58, pp. 165–179, 2015.
[16] D. Chronopoulos, “Design optimization of composite structures operating in acoustic environments,” Journal of Sound and Vibration, vol. 355, pp. 322–344, 2015.
[17] M. Ben-Souf, D. Chronopoulos, M. Ichchou, O. Bareille, and M. Haddar, “On the variability of the sound transmission loss of composite panels through a parametric probabilistic approach,” Journal of Computational Acoustics, vol. 24, no. 1, 2016.
[18] D. Chronopoulos, “Wave steering effects in anisotropic composite structures: Direct calculation of the energy skew angle through a finite element scheme,” Ultrasonics, vol. 73, pp. 43–48, 2017.
[19] J. M. Renno and B. R. Mace, “Calculation of reflection and transmission coefficients of joints using a hybrid finite element/wave and finite element approach,” Journal of Sound and Vibration, vol. 332, no. 9, pp. 2149–2164, 2013.
[20] W. Zhou and M. Ichchou, “Wave propagation in mechanical waveguide with curved members using wave finite element solution,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 33, pp. 2099–2109, 2010.
[21] T. Huang, M. Ichchou, and O. Bareille, “Multi-mode wave propagation in damaged stiffened panels,” Structural Control and Health Monitoring, vol. 19, no. 5, pp. 609–629, 2012.
[22] R. Cook, Concepts and Applications of Finite Element Analysis, 2nd ed. John Wiley and Sons. New York., 1981.
[23] A. Inc., ANSYS 14.0 User’s Help, 2014.
[24] J. Doyle, Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms. Springer, 1997.
Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007