Scholarly Research Excellence

Digital Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Paper Count: 31

31
10009383
A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

30
10007737
Extended Shelf Life of Chicken Meat Using Carboxymethyl Cellulose Coated Polypropylene Films Containing Zataria multiflora Essential Oil
Abstract:

The purpose of the present study was to evaluate carboxymethyl cellulose (CMC) coated polypropylene (PP) films containing Zataria multiflora (ZEO) essential oils (4%) as an antimicrobial packaging for chicken breast stored at 4 °C. To increase PP film hydrophilicity, it was treated by atmospheric cold plasma prior to coating by CMC. Then, different films including PP, PP/CMC, PP/CMC containing 4% of ZEO were used for the chicken meat packaging in vapor phase. Total viable count and pseudomonads population and oxidative (TBA) changes of the chicken breast were analyzed during shelf life. Results showed that the shelf life of chicken meat kept in films containing ZEO improved from three to nine days compared to the control sample without any direct contact with the film. Study of oxygen barrier properties of bilayer film without essential oils (0.096 cm3 μm/m2 d kPa) in comparison with PP film (416 cm3 μm/m2 d kPa) shows that coating of PP with CMC significantly reduces oxygen permeation of the obtained packaging (P<0.05), which reduced aerobic bacteria growth. Chemical composition of ZEO was also evaluated by gas chromatography–mass spectrometry (GC–MS), and this shows that thymol was the main antimicrobial and antioxidant component of the essential oil. The results revealed that PP/CMC containing ZEO has good potential for application as active food packaging in indirect contact which would also improve sensory properties of product.

29
10006540
Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility
Abstract:

Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.

28
10006215
A Comparative Study on Air Permeability Properties of Multilayered Nonwoven Structures
Abstract:

Air permeability plays an important role for applications such as filtration, thermal and acoustic insulation. The study discussed in this paper was conducted in an attempt to investigate air permeability property of various combinations of nonwovens. The PROWHITE air permeability tester was used for the measurement of the air permeability of the samples in accordance with the relevant standards and a comparative study of the results were made. It was found that the fabric mass per unit area was closely related to the air-permeability. The air permeability decreased with the increase in mass per unit area. Additionally, the air permeability of nonwoven fabrics decreased with the increase in thickness. Moreover, air permeability of multilayered SMS nonwoven structures was lower than those of single layered ones.

27
10003932
Ultrasonic Pulse Velocity Investigation of Polypropylene and Steel Fiber Reinforced Concrete
Abstract:

Ultrasonic pulse velocity (UPV) method has been shown for some time to provide a reliable means of estimating properties and offers a unique opportunity for direct, quick and safe control of building damaged by earthquake, fatigue, conflagration and catastrophic scenarios. On this investigation hybrid reinforced concrete has been investigated by UPV method. Hooked end steel fiber of length 50 and 30 mm was added to concrete in different proportion 0, 0.25, 0.5, and 1 % by the volume of concrete. On the other hand, polypropylene fiber of length 12, 6, 3 mm was added to concrete of 0.1, 0.2, and 0.4 % by the volume of concrete. Fifteen different mixture has been prepared to investigate the relation between compressive strength and UPV values and also to investigate on the effect of volume and type of fiber on UPV values.

26
10003989
Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites
Abstract:
Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites.
25
10003276
Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites
Abstract:
This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66, and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay. The results showed that the use of nanoclay affects the variations of storage modulus (G′), loss modulus (G″) and the melt elasticity.
24
10002291
The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils
Abstract:
Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipments by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be said that stabilization of expansive soils with polypropylene fiber is an effective method.
23
10005943
Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application
Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

22
10002052
A Pull-out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites: The Influence of the Processing Temperature
Abstract:
This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find that a molding temperature of 183◦C leads to better interfacial properties. Above or below this temperature the interface strength is reduced.
21
9999954
High Performance Fibre Reinforced Alkali Activated Slag Concrete
Abstract:

The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.

20
9999724
Use of Nanoclay in Various Modified Polyolefins
Abstract:

Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and PE-ionomer nanocomposite samples were prepared by mixing of the polymer with organofilized montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of each modified montmorillonite (MMT) was fixed to 5% (w/w). The twin-screw kneader was used for the compounding of polymer matrix and chosen nanofillers. The level of MMT exfoliation was studied by the transmission electron microscopy (TEM) observations. The mechanical properties of prepared materials were evaluated by dynamical mechanical analysis at 30°C and by the measurement of tensile properties (stress and strain at break).

19
9999330
Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites
Abstract:

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

18
9999332
Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites
Abstract:

In this research work, poly (acrylonitrile-butadienestyrene)/ polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.

17
9999333
Pathology of Explanted Transvaginal Meshes
Abstract:

The use of polypropylene mesh devices for Pelvic Organ Prolapse (POP) spread rapidly during the last decade, yet our knowledge of the mesh-tissue interaction is far from complete. We aimed to perform a thorough pathological examination of explanted POP meshes and describe findings that may explain mechanisms of complications resulting in product excision. We report a spectrum of important findings, including nerve ingrowth, mesh deformation, involvement of detrusor muscle with neural ganglia, and polypropylene degradation. Analysis of these findings may improve and guide future treatment strategies.

16
10003947
Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber
Authors:
Abstract:
Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data.
15
9998925
Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect
Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH, as a sustainable material, instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

14
9999165
Effects of Adding Fibre on Strength and Permeability of Recycled Aggregate Concrete Containing Treated Coarse RCA
Abstract:

This paper presents the experiment results of investigating the effects of adding various types and proportions of fibre on mechanical strength and permeability characteristics of recycled aggregate concrete (RAC), which was produced with treated coarse recycled concrete aggregate (RCA). Two types of synthetic fibres (i.e., barchip and polypropylene fibre) with various volume fractions were added to the RAC, which was calculated by the weight of the cement. The hardened RAC properties such as compressive strength, flexural strength, ultrasonic pulse velocity, water absorption and total porosity at the curing ages of 7 and 28 days were evaluated and compared with the properties of the control specimens. Results indicate that the treated coarse RCA enhances the mechanical strength and permeability properties of RAC and adding barchip fibre further optimises the results. Adding 1.2% barchip fibre has the best effect on the mechanical strength performance of the RAC.

13
9998447
Layer-by-Layer Deposition of Poly (Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric. Electrostatic and Thermal Properties
Abstract:

The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20oC). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.

12
17250
Mechanical Properties and Released Gas Analysis of High Strength Concrete with Polypropylene and Raw Rice Husk under High Temperature Effect
Abstract:

When concrete is exposed to high temperatures, some changes may occur in its physical and mechanical properties. Especially, high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a well-known method. In high temperatures, PP decomposes and releases harmful gases such as CO and CO2. This study researches the use of raw rice husk (RRH) as a sustainable material, instead of PP fibers considering its several favorable properties, and its usability in HSC. RRH and PP fibers were incorporated in concrete at 0.5-3% and 0.2-0.5% by weight of cement, respectively. Concrete specimens were exposed to 20 (control), 300, 600 and 900°C. Under these temperatures, residual compressive and splitting tensile strength was determined. During the high temperature effect, the amount of released harmful gases was measured by a gas detector.

11
17200
A Study on the Improvement of the Bond Performance of Polypropylene Macro Fiber According to Longitudinal Shape Change
Abstract:

This study intends to improve the bond performance of the polypropylene fiber used as reinforcing fiber for concrete by changing its shape into double crimped type through the enhancement its fabrication process. The bond performance of such double crimped fiber is evaluated by applying the JCI SF-8 (dog-bone shape) testing method. The test results reveal that the double crimped fiber develops bond performance improved by more than 19% compared to the conventional crimped type fiber. 

10
2304
Effects of Coupling Agent and Flame Retardant on the Performances of Oil Palm Empty Fruit Bunch Fiber Reinforced Polypropylene Composites
Abstract:
Alkali treated oil palm empty fruit bunch (EFB) fibres (TEFBF) and untreated EFBF fibers (UEFBF) were incorporated in polypropylene (PP) with and without malic anhydride grafted PP (MAPP) and magnesium hydroxide as flame retardant (FR) to produce TEFBF-PP and UEFBF-PP composites by the melt casting method. The composites were characterized by mechanical and burning tests along with a scanning electron microscope and Fourier transform infrared spectroscopy. The significant improvement in flexural modulus (133%) and flame retardant property (60%) of TEFBF-PP composite with MAPP and FR is observed. The improved mechanical property is discussed by the development of encapsulated textures.
9
511
Physico-Mechanical Properties of Jute-Coir Fiber Reinforced Hybrid Polypropylene Composites
Abstract:
The term hybrid composite refers to the composite containing more than one type of fiber material as reinforcing fillers. It has become attractive structural material due to the ability of providing better combination of properties with respect to single fiber containing composite. The eco-friendly nature as well as processing advantage, light weight and low cost have enhanced the attraction and interest of natural fiber reinforced composite. The objective of present research is to study the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite according to filler loading variation. In the present work composites were manufactured by using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt %). Jute and coir fibers were utilized at a ratio of (1:1) during composite manufacturing. Tensile, flexural, impact and hardness tests were conducted for mechanical characterization. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young-s modulus with increasing fiber content. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness were found to be increased with increasing fiber loading. Based on the fiber loading used in this study, 20% fiber reinforced composite resulted the best set of mechanical properties.
8
7042
Thermal and Mechanical Properties of Modified CaCO3 /PP Nanocomposites
Abstract:
Inorganic nanoparticles filled polymer composites have extended their multiple functionalities to various applications, including mechanical reinforcement, gas barrier, dimensional stability, heat distortion temperature, flame-retardant, and thermal conductivity. Sodium stearate-modified calcium carbonate (CaCO3) nanoparticles were prepared using surface modification method. The results showed that sodium stearate attached to the surface of CaCO3 nanoparticles with the chemical bond. The effect of modified CaCO3 nanoparticles on thermal properties of polypropylene (PP) was studied by means of differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). It was found that CaCO3 significantly affected the crystallization temperature and crystallization degree of PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the hardness increased by about 5%.
7
2317
Optimization of Asphalt Binder Modified with PP/SBS/Nanoclay Nanocomposite using Taguchi Method
Abstract:
This study has applied the L16 orthogonal array of the Taguchi method to determine the optimized polymeric Nanocomposite asphalt binder. Three control factors are defined as polypropylene plastomer (PP), styrene-butadiene-styrene elastomer (SBS) and Nanoclay. Four level of concentration contents are introduced for prepared asphalt binder samples. all samples were prepared with 4.5% of bitumen 60/70 content. Compressive strength tests were carried out for defining the optimized sample via QUALITEK-4 software. SBS with 3%, PP with 5 % and Nanoclay with 1.5% of concentrations are defined as the optimized Nanocomposite asphalt binders. The confirmation compressive strength and also softening point tests showed that modification of asphalt binders with this method, improved the compressive strength and softening points of asphalt binders up to 55%.
6
4185
Mechanical-Physical Characteristics Affecting the Durability of Fibre Reinforced Concrete with Recycled Aggregate
Abstract:
The article presents findings from the study and analysis of the results of an experimental programme focused on the production of concrete and fibre reinforced concrete in which natural aggregate has been substituted with brick or concrete recyclate. The research results are analyzed to monitor the effect of mechanicalphysical characteristics on the durability properties of tested cementitious composites. The key parts of the fibre reinforced concrete mix are the basic components: aggregates – recyclate, cement, fly ash, water and fibres. Their specific ratios and the properties of individual components principally affect the resulting behaviour of fresh fibre reinforced concrete and the characteristics of the final product. The article builds on the sources dealing with the use of recycled aggregates from construction and demolition waste in the production of fibre reinforced concrete. The implemented procedure of testing the composite contributes to the building sustainability in environmental engineering.
5
12155
Effect of Natural Animal Fillers on Polymer Rheology Behaviour
Abstract:
This paper deals with the evaluation of flow properties of polymeric matrix with natural animal fillers. Technical university of Liberec cooperates on the long-term development of “green materials“ that should replace conventionally used materials (especially in automotive industry). Natural fibres (of animal and plant origin) from all over the world are collected and adapted (drying, cutting etc.) for extrusion processing. Inside the extruder these natural additives are blended with polymeric (synthetic and biodegradable - PLA) matrix and created compound is subsequently cut for pellets in the wet way. These green materials with unique recipes are then studied and their mechanical, physical and processing properties are determined. The main goal of this research is to develop new ecological materials very similar to unfilled polymers. In this article the rheological behaviour of chosen natural animal fibres is introduced considering their shape and surface that were observed with use of SEM microscopy.
4
8906
Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties
Abstract:

This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely control mix, wet mix and dry mix were prepared. Optimum binder content was calculated considering Marshall Stability, flow, air voids and Marshall Quotient at different bitumen content varying from 4% - 6.5% for control, dry and wet mix. Engineering properties thus obtained at the calculated optimum bitumen content revealed that wet mixing process is advantageous in comparison to dry mixing as it increases the stiffness of the mixture with the increase in polymer content in bitumen. Stiffness value for wet mix increases with the increase in polymer content which is beneficial in terms of rutting. 1% PP dry mix also shows enhanced stiffness, with the air void content limited to 4%.The flow behaviour of dry mix doesn't indicate any major difference with the increase in polymer content revealing that polymer acting as an aggregate only without affecting the viscosity of the binder in the mix. Polypropylene (PP) when interacted with 80 pen base bitumen enhances its performance characteristics which were brought about by altered rheological properties of the modified bitumen. The decrease in flow with the increase in binder content reflects the increase in viscosity of binder which induces the plastic flow in the mix. Workability index indicates that wet mix were easy to compact up to desired void ratio in comparison to dry mix samples.

3
9823
Experimental and Statistical Study of Nonlinear Effect of Carbon Nanotube on Mechanical Properties of Polypropylene Composites
Abstract:
In this study concept of experimental design is successfully applied for the determination of optimum condition to produce PP/SWCNT (Polypropylene/Single wall carbon nanotube) nanocomposite. Central composite design as one of experimental design techniques is employed for the optimization and statistical determination of the significant factors influencing on the tensile modulus and yield stress as mechanical properties of this nanocomposite. The significant factors are SWCNT weight fraction and acid treatment time for functionalizing the nanoparticles. Optimum conditions are in 0.7 % of SWCNT weight fraction and 210 min as acid treatment time for 1112.75 ± 28 MPa as maximum tensile modulus and in 216 min and 0.65 % as acid treatment time and SWCNT weight fraction respectively for 40.26 ± 0.3 MPa as maximum yield stress. Also after setting new experiments for test these optimum conditions, found excelent agreement with predicted values.
2
10174
Rheological Properties of Polyethylene and Polypropylene Modified Bitumen
Abstract:
This paper presents a part of research on the rheological properties of bitumen modified by thermoplastic namely linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and polypropylene (PP) and its interaction with 80 pen base bitumen. As it is known that the modification of bitumen by the use of polymers enhances its performance characteristics but at the same time significantly alters its rheological properties. The rheological study of polymer modified bitumen (PMB) was made through penetration, ring & ball softening point and viscosity test. The results were then related to the changes in the rheological properties of polymer modified bitumen. It was observed that thermoplastic copolymer shows profound effect on penetration rather than softening point. The viscoelastic behavior of polymer modified bitumen depend on the concentration of polymer, mixing temperature, mixing technique, solvating power of base bitumen and molecular structure of polymer used. PP offer better blend in comparison to HDPE and LLDPE. The viscosity of base bitumen was also enhanced with the addition of polymer. The pseudoplastic behavior was more prominent for HDPE and LLDPE than PP. Best results were obtained when polymer concentration was kept below 3%
Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007