Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Paper Count: 9

9
10006038
Necessary and Sufficient Condition for the Quaternion Vector Measure
Abstract:
In this paper, the definitions of the quaternion measure and the quaternion vector measure are introduced. The relation between the quaternion measure and the complex vector measure as well as the relation between the quaternion linear functional and the complex linear functional are discussed respectively. By using these relations, the necessary and sufficient condition to determine the quaternion vector measure is given.
8
10003650
Spherical Spectrum Properties of Quaternionic Operators
Abstract:
In this paper, the similarity invariant and the upper semi-continuity of spherical spectrum, and the spherical spectrum properties for infinite direct sums of quaternionic operators are characterized, respectively. As an application of some results established, a concrete example about the computation of the spherical spectrum of a compact quaternionic operator with form of infinite direct sums of quaternionic matrices is also given.
7
10003230
Linear Maps That Preserve Left Spectrum of Diagonal Quaternionic Matrices
Abstract:
In this paper, we discuss some properties of left spectrum and give the representation of linear preserver map the left spectrum of diagonal quaternionic matrices.
6
9998008
An Iterative Method for Quaternionic Linear Equations
Abstract:

By the real representation of the quaternionic matrix, an iterative method for quaternionic linear equations Ax = b is proposed. Then the convergence conditions are obtained. At last, a numerical example is given to illustrate the efficiency of this method.

5
14952
Dynamic Time Warping in Gait Classificationof Motion Capture Data
Abstract:

The method of gait identification based on the nearest neighbor classification technique with motion similarity assessment by the dynamic time warping is proposed. The model based kinematic motion data, represented by the joints rotations coded by Euler angles and unit quaternions is used. The different pose distance functions in Euler angles and quaternion spaces are considered. To evaluate individual features of the subsequent joints movements during gait cycle, joint selection is carried out. To examine proposed approach database containing 353 gaits of 25 humans collected in motion capture laboratory is used. The obtained results are promising. The classifications, which takes into consideration all joints has accuracy over 91%. Only analysis of movements of hip joints allows to correctly identify gaits with almost 80% precision.

4
3518
Analysis of Euler Angles in a Simple Two-Axis Gimbals Set
Abstract:

Any rotation of a 3-dimensional object can be performed by three consecutive rotations over Euler angles. Intrinsic rotations produce the same result as extrinsic rotations in transformation. Euler rotations are the movement obtained by changing one of the Euler angles while leaving the other two constant. These Euler rotations are applied in a simple two-axis gimbals set mounted on an automotives. The values of Euler angles are [π/4, π/4, π/4] radians inside the angles ranges for a given coordinate system and these actual orientations can be directly measured from these gimbals set of moving automotives but it can occur the gimbals lock in application at [π/2.24, 0, 0] radians. In order to avoid gimbals lock, the values of quaternion must be [π/4.8, π/8.2, 0, π/4.8] radians. The four-gimbals set can eliminate gimbals lock.

3
4376
On Positive Definite Solutions of Quaternionic Matrix Equations
Authors:
Abstract:
The real representation of the quaternionic matrix is definited and studied. The relations between the positive (semi)define quaternionic matrix and its real representation matrix are presented. By means of the real representation, the relation between the positive (semi)definite solutions of quaternionic matrix equations and those of corresponding real matrix equations is established.
2
3292
A Global Condition for the Triviality of an Almost Split Quaternionic Structure on Split Complex Manifolds
Abstract:
Let M be an almost split quaternionic manifold on which its almost split quaternionic structure is defined by a three dimensional subbundle V of ( T M) T (M) * Ôèù and {F,G,H} be a local basis for V . Suppose that the (global) (1, 2) tensor field defined[V ,V ]is defined by [V,V ] = [F,F]+[G,G] + [H,H], where [,] denotes the Nijenhuis bracket. In ref. [7], for the almost split-hypercomplex structureH = J α,α =1,2,3, and the Obata connection ÔêçH vanishes if and only if H is split-hypercomplex. In this study, we give a prof, in particular, prove that if either M is a split quaternionic Kaehler manifold, or if M is a splitcomplex manifold with almost split-complex structure F , then the vanishing [V ,V ] is equivalent to that of all the Nijenhuis brackets of {F,G,H}. It follows that the bundle V is trivial if and only if [V ,V ] = 0 .
1
3040
Curvature of Almost Split Quaternion Kaehler Manifolds
Abstract:
In this work some characterizations of semi Riemannian curvature tensor on almost split quaternion Kaehler manifolds and some characterizations of Ricci tensor on almost split quaternion Kaehler manifolds are given.
Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007