Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 154

Application of l1-Norm Minimization Technique to Image Retrieval

Image retrieval is a topic where scientific interest is currently high. The important steps associated with image retrieval system are the extraction of discriminative features and a feasible similarity metric for retrieving the database images that are similar in content with the search image. Gabor filtering is a widely adopted technique for feature extraction from the texture images. The recently proposed sparsity promoting l1-norm minimization technique finds the sparsest solution of an under-determined system of linear equations. In the present paper, the l1-norm minimization technique as a similarity metric is used in image retrieval. It is demonstrated through simulation results that the l1-norm minimization technique provides a promising alternative to existing similarity metrics. In particular, the cases where the l1-norm minimization technique works better than the Euclidean distance metric are singled out.

Radio over Fiber as a Cost Effective Technology for Transmission of WiMAX Signals
In this paper, an overview of the radio over fiber (RoF) technology is provided. Obstacles for reducing the capital and operational expenses in the existing systems are discussed in various perspectives. Some possible RoF deployment scenarios for WiMAX data transmission are proposed as a means for capital and operational expenses reduction. IEEE 802.16a standard based end-to-end physical layer model is simulated including intensity modulated direct detection RoF technology. Finally the feasibility of RoF technology to carry WiMAX signals between the base station and the remote antenna units is demonstrated using the simulation results.
Recent Advances on Computational Proteomics

In this work we report the recent progresses that have been achieved by our group in the last half decade on the field of computational proteomics. Specifically, we discuss the application of Molecular Dynamics Simulations and Electronic Structure Calculations in drug design, in the clarification of the structural and dynamic properties of proteins and enzymes and in the understanding of the catalytic and inhibition mechanism of cancer-related enzymes. A set of examples illustrate the concepts and help to introduce the reader into this important and fast moving field.

The Water Level Detection Algorithm Using the Accumulated Histogram with Band Pass Filter
In this paper, we propose the robust water level detection method based on the accumulated histogram under small changed image which is acquired from water level surveillance camera. In general surveillance system, this is detecting and recognizing invasion from searching area which is in big change on the sequential images. However, in case of a water level detection system, these general surveillance techniques are not suitable due to small change on the water surface. Therefore the algorithm introduces the accumulated histogram which is emphasizing change of water surface in sequential images. Accumulated histogram is based on the current image frame. The histogram is cumulating differences between previous images and current image. But, these differences are also appeared in the land region. The band pass filter is able to remove noises in the accumulated histogram Finally, this algorithm clearly separates water and land regions. After these works, the algorithm converts from the water level value on the image space to the real water level on the real space using calibration table. The detected water level is sent to the host computer with current image. To evaluate the proposed algorithm, we use test images from various situations.
FleGSens – Secure Area Monitoring Using Wireless Sensor Networks
In the project FleGSens, a wireless sensor network (WSN) for the surveillance of critical areas and properties is currently developed which incorporates mechanisms to ensure information security. The intended prototype consists of 200 sensor nodes for monitoring a 500m long land strip. The system is focused on ensuring integrity and authenticity of generated alarms and availability in the presence of an attacker who may even compromise a limited number of sensor nodes. In this paper, two of the main protocols developed in the project are presented, a tracking protocol to provide secure detection of trespasses within the monitored area and a protocol for secure detection of node failures. Simulation results of networks containing 200 and 2000 nodes as well as the results of the first prototype comprising a network of 16 nodes are presented. The focus of the simulations and prototype are functional testing of the protocols and particularly demonstrating the impact and cost of several attacks.
Character Segmentation Method for a License Plate with Topological Transform
This paper propose the robust character segmentation method for license plate with topological transform such as twist,rotation. The first step of the proposed method is to find a candidate region for character and license plate. The character or license plate must be appeared as closed loop in the edge image. In the case of detecting candidate for character region, the evaluation of detected region is using topological relationship between each character. When this method decides license plate candidate region, character features in the region with binarization are used. After binarization for the detected candidate region, each character region is decided again. In this step, each character region is fitted more than previous step. In the next step, the method checks other character regions with different scale near the detected character regions, because most license plates have license numbers with some meaningful characters around them. The method uses perspective projection for geometrical normalization. If there is topological distortion in the character region, the method projects the region on a template which is defined as standard license plate using perspective projection. In this step, the method is able to separate each number region and small meaningful characters. The evaluation results are tested with a number of test images.
Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm

The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.

On the Numbers of Various Young Tableaux
We demonstrate a way to count the number of Young tableau u of shape λ = (k, k,L, k) with | λ |= lk by expanding Schur function. This result gives an answer to the question that was put out by Jenny Buontempo and Brian Hopkins.
Effective Image and Video Error Concealment using RST-Invariant Partial Patch Matching Model and Exemplar-based Inpainting
An effective visual error concealment method has been presented by employing a robust rotation, scale, and translation (RST) invariant partial patch matching model (RSTI-PPMM) and exemplar-based inpainting. While the proposed robust and inherently feature-enhanced texture synthesis approach ensures the generation of excellent and perceptually plausible visual error concealment results, the outlier pruning property guarantees the significant quality improvements, both quantitatively and qualitatively. No intermediate user-interaction is required for the pre-segmented media and the presented method follows a bootstrapping approach for an automatic visual loss recovery and the image and video error concealment.
Comparative Analysis of Different Control Strategies for Electro-hydraulic Servo Systems
The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the control strategy that may be used for the control of the servomechanism system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy (classical feedback (PID) & neural network) using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with classical control.
Robust Detection of R-Wave Using Wavelet Technique
Electrocardiogram (ECG) is considered to be the backbone of cardiology. ECG is composed of P, QRS & T waves and information related to cardiac diseases can be extracted from the intervals and amplitudes of these waves. The first step in extracting ECG features starts from the accurate detection of R peaks in the QRS complex. We have developed a robust R wave detector using wavelets. The wavelets used for detection are Daubechies and Symmetric. The method does not require any preprocessing therefore, only needs the ECG correct recordings while implementing the detection. The database has been collected from MIT-BIH arrhythmia database and the signals from Lead-II have been analyzed. MatLab 7.0 has been used to develop the algorithm. The ECG signal under test has been decomposed to the required level using the selected wavelet and the selection of detail coefficient d4 has been done based on energy, frequency and cross-correlation analysis of decomposition structure of ECG signal. The robustness of the method is apparent from the obtained results.
Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples

Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol with PCranking- ANN were 0.6680, 0.0766 and 0.1033, respectively. Calibration matrices were 0.50-21.0, 0.50-15.1 and 0.50-20.0 μg ml-1 for phenol, resorcinol and catechol, respectively. The proposed method was successfully applied for the determination of phenol, resorcinol and catechol in synthetic and water samples.

The Design of PIP Controller for a Thermal System with Large Time Delay
This paper will first describe predictor controllers when the proportional-integral-derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, the predictor controllers are better than the PID controllers, then compares three types of predictor controllers. The value of these controller-s parameters are obtained by trial and error method, so here an effort has been made to obtain these parameters by Ziegler-Nichols method. Eventually in this paper Ziegler-Nichols method has been described and finally, a PIP controller has been designed for a thermal system, which circulates hot air to keep the temperature of a chamber constant.
A Codebook-based Redundancy Suppression Mechanism with Lifetime Prediction in Cluster-based WSN
Wireless Sensor Network (WSN) comprises of sensor nodes which are designed to sense the environment, transmit sensed data back to the base station via multi-hop routing to reconstruct physical phenomena. Since physical phenomena exists significant overlaps between temporal redundancy and spatial redundancy, it is necessary to use Redundancy Suppression Algorithms (RSA) for sensor node to lower energy consumption by reducing the transmission of redundancy. A conventional algorithm of RSAs is threshold-based RSA, which sets threshold to suppress redundant data. Although many temporal and spatial RSAs are proposed, temporal-spatial RSA are seldom to be proposed because it is difficult to determine when to utilize temporal or spatial RSAs. In this paper, we proposed a novel temporal-spatial redundancy suppression algorithm, Codebookbase Redundancy Suppression Mechanism (CRSM). CRSM adopts vector quantization to generate a codebook, which is easily used to implement temporal-spatial RSA. CRSM not only achieves power saving and reliability for WSN, but also provides the predictability of network lifetime. Simulation result shows that the network lifetime of CRSM outperforms at least 23% of that of other RSAs.
Removal of Copper (II) from Aqueous Solutions Using Teak (Tectona grandis L.f) Leaves
The experiments were performed in a batch set up under different concentrations of Cu (II) (0.2 g.l-1 to 0.9 g.l-1), pH (4- 6), temperatures (20oC – 40oC) with varying teak leaves powder (as biosorbent) dosage of 0.3 g.l-1 to 0.5 g.l-1. The kinetics of interactions were tested with pseudo first order Lagergran equation and the value for k1 was found to be 6.909 x 10-3 min-1. The biosorption data gave a good fit with Langmuir and Fruendlich isotherms and the Langmuir monolayer capacity (qm) was found to be 166.78 mg. g-1. Similarly the Freundlich adsorption capacity (Kf) was estimated as 2.49 l g-1. The mean values of the thermodynamic parameters ΔH, ΔS, and ΔG were -62.42 KJ. mol-1, -0.219 KJ.mol-1 K-1 and -1.747 KJ.mol-1 at 293 K from a solution containing 0.4 g l-1 of Cu(II) showing the biosorption to be thermodynamically favourable. These results show good potentiality of using teak leaves as a biosorbent for the removal of Cu(II) from aqueous solutions.
Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel
Constant amplitude fatigue crack growth (FCG) tests were performed on dissimilar metal welded plates of Type 316L Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The plates were welded by TIG welding using SS E309 as electrode. FCG tests were carried on the Side Edge Notch Tension (SENT) specimens of 5 mm thickness, with crack initiator (notch) at base metal region (BM), weld metal region (WM) and heat affected zones (HAZ). The tests were performed at a test frequency of 10 Hz and at load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with stress ratio for weld metals and base metals, where as in case of HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of stainless steel was found to be lowest at low and high ΔK. At intermediate ΔK, WM showed the lowest FCG rate. CS showed higher crack growth rate at all ΔK. However, the scatter band of data was found to be narrow. Fracture toughness (Kc) was found to vary in different locations of weldments. Kc was found lowest for the weldment and highest for HAZ of stainless steel. A novel method of characterizing the FCG behavior using an Infrared thermography (IRT) camera was attempted. By monitoring the temperature rise at the fast moving crack tip region, the amount of plastic deformation was estimated.
Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading
This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.
Molecular Dynamics and Circular Dichroism Studies on Aurein 1.2 and Retro Analog
Aurein 1.2 is a 13-residue amphipathic peptide with antibacterial and anticancer activity. Aurein1.2 and its retro analog were synthesized to study the activity of the peptides in relation to their structure. The antibacterial test result showed the retro-analog is inactive. The secondary structural analysis by CD spectra indicated that both of the peptides at TFE/Water adopt alpha-helical conformation. MD simulation was performed on aurein 1.2 and retro-analog in water and TFE in order to analyse the factors that are involved in the activity difference between retro and the native peptide. The simulation results are discussed and validated in the light of experimental data from the CD experiment. Both of the peptides showed a relatively similar pattern for their hydrophobicity, hydrophilicity, solvent accessible surfaces, and solvent accessible hydrophobic surfaces. However, they showed different in directions of dipole moment of peptides. Also, Our results further indicate that the reversion of the amino acid sequence affects flexibility .The data also showed that factors causing structural rigidity may decrease the activity. Consequently, our finding suggests that in the case of sequence-reversed peptide strategy, one has to pay attention to the role of amino acid sequence order in making flexibility and role of dipole moment direction in peptide activity. KeywordsAntimicrobial peptides, retro, molecular dynamic, circular dichroism.
An Efficient Architecture for Interleaved Modular Multiplication
Modular multiplication is the basic operation in most public key cryptosystems, such as RSA, DSA, ECC, and DH key exchange. Unfortunately, very large operands (in order of 1024 or 2048 bits) must be used to provide sufficient security strength. The use of such big numbers dramatically slows down the whole cipher system, especially when running on embedded processors. So far, customized hardware accelerators - developed on FPGAs or ASICs - were the best choice for accelerating modular multiplication in embedded environments. On the other hand, many algorithms have been developed to speed up such operations. Examples are the Montgomery modular multiplication and the interleaved modular multiplication algorithms. Combining both customized hardware with an efficient algorithm is expected to provide a much faster cipher system. This paper introduces an enhanced architecture for computing the modular multiplication of two large numbers X and Y modulo a given modulus M. The proposed design is compared with three previous architectures depending on carry save adders and look up tables. Look up tables should be loaded with a set of pre-computed values. Our proposed architecture uses the same carry save addition, but replaces both look up tables and pre-computations with an enhanced version of sign detection techniques. The proposed architecture supports higher frequencies than other architectures. It also has a better overall absolute time for a single operation.
HIV Treatment Planning on a case-by-CASE Basis

This study presents a mathematical modeling approach to the planning of HIV therapies on an individual basis. The model replicates clinical data from typical-progressors to AIDS for all stages of the disease with good agreement. Clinical data from rapid-progressors and long-term non-progressors is also matched by estimation of immune system parameters only. The ability of the model to reproduce these phenomena validates the formulation, a fact which is exploited in the investigation of effective therapies. The therapy investigation suggests that, unlike continuous therapy, structured treatment interruptions (STIs) are able to control the increase in both the drug-sensitive and drug-resistant virus population and, hence, prevent the ultimate progression from HIV to AIDS. The optimization results further suggest that even patients characterised by the same progression type can respond very differently to the same treatment and that the latter should be designed on a case-by-case basis. Such a methodology is presented here.

Signed Approach for Mining Web Content Outliers
The emergence of the Internet has brewed the revolution of information storage and retrieval. As most of the data in the web is unstructured, and contains a mix of text, video, audio etc, there is a need to mine information to cater to the specific needs of the users without loss of important hidden information. Thus developing user friendly and automated tools for providing relevant information quickly becomes a major challenge in web mining research. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent ones that are likely to contain outlying data such as noise, irrelevant and redundant data. This paper mainly focuses on Signed approach and full word matching on the organized domain dictionary for mining web content outliers. This Signed approach gives the relevant web documents as well as outlying web documents. As the dictionary is organized based on the number of characters in a word, searching and retrieval of documents takes less time and less space.
Breast Cancer Treatment Evaluation based on Mammographic and Echographic Distance Computing
Accurate assessment of the primary tumor response to treatment is important in the management of breast cancer. This paper introduces a new set of treatment evaluation indicators for breast cancer cases based on the computational process of three known metrics, the Euclidian, Hamming and Levenshtein distances. The distance principals are applied to pairs of mammograms and/or echograms, recorded before and after treatment, determining a reference point in judging the evolution amount of the studied carcinoma. The obtained numerical results are indeed very transparent and indicate not only the evolution or the involution of the tumor under treatment, but also a quantitative measurement of the benefit in using the selected method of treatment.
Harmonic Analysis of 240 V AC Power Supply using TMS320C6713 DSK
The presence of harmonic in power system is a major concerned to power engineers for many years. With the increasing usage of nonlinear loads in power systems, the harmonic pollution becomes more serious. One of the widely used computation algorithm for harmonic analysis is fast Fourier transform (FFT). In this paper, a harmonic analyzer using FFT was implemented on TMS320C6713 DSK. The supply voltage of 240 V 59 Hz is stepped down to 5V using a voltage divider in order to match the power rating of the DSK input. The output from the DSK was displayed on oscilloscope and Code Composer Studio™ software. This work has demonstrated the possibility of analyzing the 240V power supply harmonic content using the DSK board.
Tunable Photonic Microwave Bandpass Filter Based on EOPM and VPBS
A tunable photonic microwave bandpass filter with negative coefficient based on an electro-optic phase modulator (EOPM) and a variable polarization beamsplitter (VPBS) is demonstrated. A two-tap microwave bandpass filter with one negative coefficient is presented. The chromatic dispersion and optical coherence are not affected on this filter.
Delay and Packet Loss Analysis for Handovers between MANETs and NEMO Networks
MANEMO is the integration of Network Mobility (NEMO) and Mobile Ad Hoc Network (MANET). A MANEMO node has an interface to both a MANET and NEMO network, and therefore should choose the optimal interface for packet delivery, however such a handover between interfaces will introduce packet loss. We define the steps necessary for a MANEMO handover, using Mobile IP and NEMO to signal the new binding to the relevant Home Agent(s). The handover steps aim to minimize the packet loss by avoiding waiting for Duplicate Address Detection and Neighbour Unreachability Detection. We present expressions for handover delay and packet loss, and then use numerical examples to evaluate a MANEMO handover. The analysis shows how the packet loss depends on level of nesting within NEMO, the delay between Home Agents and the load on the MANET, and hence can be used to developing optimal MANEMO handover algorithms.
Experimental Investigation of a Mixture of Methane, Carbon Dioxide and Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors
Gas hydrates form when a number of factors co-exist: free water, hydrocarbon gas, cold temperatures and high pressures are typical of the near mud-line conditions in a deepwater drilling operation. Subsequently, when drilling with water based muds, particularly on exploration wells, the risk of hydrate formation associated with a gas influx is high. The consequences of gas hydrate formation while drilling are severe, and as such, every effort should be made to ensure the risk of hydrate formation is either eliminated or significantly reduced. Thermodynamic inhibitors are used to reduce the free water content of a drilling mud, and thus suppress the hydrate formation temperature. Very little experimental work has been performed by oil and gas research companies on the evaluation of gas hydrate formation in a water-based drilling mud. The main objective of this paper is to investigate the experimental gas hydrate formation for a mixture of methane, carbon dioxide & nitrogen in a water-based drilling mud with or without presence of different concentrations of thermodynamic inhibitors including pure salt and a combination of salt with methanol or ethylene glycol at different concentrations in a static loop apparatus. The experiments were performed using a static loop apparatus consisting of a 2.4307 cm inside diameter and 800 cm long pipe. All experiments were conducted at 2200 psia. The temperature in the loop was decreased at a rate of 3.33 °F/h from initial temperature of 80 °F.
Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm
In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.
An Atomic-Domains-Based Approach for Attack Graph Generation
Attack graph is an integral part of modeling the overview of network security. System administrators use attack graphs to determine how vulnerable their systems are and to determine what security measures to deploy to defend their systems. Previous methods on AGG(attack graphs generation) are aiming at the whole network, which makes the process of AGG complex and non-scalable. In this paper, we propose a new approach which is simple and scalable to AGG by decomposing the whole network into atomic domains. Each atomic domain represents a host with a specific privilege. Then the process for AGG is achieved by communications among all the atomic domains. Our approach simplifies the process of design for the whole network, and can gives the attack graphs including each attack path for each host, and when the network changes we just carry on the operations of corresponding atomic domains which makes the process of AGG scalable.
B-VIS Service-oriented Middleware for RFID Sensor Network
One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.
Optimisation of A Phase Change Thermal Storage System
PCMs have always been viewed as a suitable candidate for off peak thermal storage, particularly for refrigeration systems, due to the high latent energy densities of these materials. However, due to the need to have them encapsulated within a container this density is reduced. Furthermore, PCMs have a low thermal conductivity which reduces the useful amount of energy which can be stored. To consider these factors, the true energy storage density of a PCM system was proposed and optimised for PCMs encapsulated in slabs. Using a validated numerical model of the system, a parametric study was undertaken to investigate the impact of the slab thickness, gap between slabs and the mass flow rate. The study showed that, when optimised, a PCM system can deliver a true energy storage density between 53% and 83% of the latent energy density of the PCM.
Electrical Performance of a Solid Oxide Fuel Cell Unit with Non-Uniform Inlet Flow and High Fuel Utilization
This study investigates the electrical performance of a planar solid oxide fuel cell unit with cross-flow configuration when the fuel utilization gets higher and the fuel inlet flow are non-uniform. A software package in this study solves two-dimensional, simultaneous, partial differential equations of mass, energy, and electro-chemistry, without considering stack direction variation. The results show that the fuel utilization increases with a decrease in the molar flow rate, and the average current density decreases when the molar flow rate drops. In addition, non-uniform Pattern A will induce more severe happening of non-reaction area in the corner of the fuel exit and the air inlet. This non-reaction area deteriorates the average current density and then deteriorates the electrical performance to –7%.
SBTAR: An Enhancing Method for Automate Test Tools
Since Software testing becomes an important part of Software development in order to improve the quality of software, many automation tools are created to help testing functionality of software. There are a few issues about usability of these tools, one is that the result log which is generated from tools contains useless information that the tester cannot use result log to communicate efficiently, or the result log needs to use a specific application to open. This paper introduces a new method, SBTAR that improves usability of automated test tools in a part of a result log. The practice will use the capability of tools named as IBM Rational Robot to create a customized function, the function would generate new format of a result log which contains useful information faster and easier to understand than using the original result log which was generated from the tools. This result log also increases flexibility by Microsoft Word or WordPad to make them readable.
Cloning and Over Expression of an Aspergillus niger XP Phytase Gene (phyA) in Pichia pastoris

A. niger XP isolated from Vietnam produces very low amount of acidic phytase with optimal pH at 2.5 and 5.5. The phytase production of this strain was successfully improved through gene cloning and expression. A 1.4 - kb DNA fragment containing the coding region of the phyA gene was amplified by PCR and inserted into the expression vector pPICZαA with a signal peptide α- factor, under the control of AOX1 promoter. The recombined plasmid was transformed into the host strain P. pastoris KM71H and X33 by electroporation. Both host strains could efficiently express and secret phytase. The multicopy strains were screened for over expression of phytase. All the selected multicopy strains of P. pastoris X33 were examined for phytase activity, the maximum phytase yield of 1329 IU/ml was obtained after 4 days of incubation in medium BMM. The recombinant protein with MW of 97.4 KW showed to be the only one protein secreted in the culture broth. Multicopy transformant P. pastoris X33 supposed to be potential candidate for producing the commercial preparation of phytase.

Application the Statistical Conditional Entropy Function for Definition of Cause-and-Effect Relations during Primary Soil Formation
Within the framework of a method of the information theory it is offered statistics and probabilistic model for definition of cause-and-effect relations in the coupled multicomponent subsystems. The quantitative parameter which is defined through conditional and unconditional entropy functions is introduced. The method is applied to the analysis of the experimental data on dynamics of change of the chemical elements composition of plants organs (roots, reproductive organs, leafs and stems). Experiment is directed on studying of temporal processes of primary soil formation and their connection with redistribution dynamics of chemical elements in plant organs. This statistics and probabilistic model allows also quantitatively and unambiguously to specify the directions of the information streams on plant organs.
Application of HSA and GA in Optimal Placement of FACTS Devices Considering Voltage Stability and Losses
Voltage collapse is instability of heavily loaded electric power systems that cause to declining voltages and blackout. Power systems are predicated to become more heavily loaded in the future decade as the demand for electric power rises while economic and environmental concerns limit the construction of new transmission and generation capacity. Heavily loaded power systems are closer to their stability limits and voltage collapse blackouts will occur if suitable monitoring and control measures are not taken. To control transmission lines, it can be used from FACTS devices. In this paper Harmony search algorithm (HSA) and Genetic Algorithm (GA) have applied to determine optimal location of FACTS devices in a power system to improve power system stability. Three types of FACTS devices (TCPAT, UPFS, and SVC) have been introduced. Bus under voltage has been solved by controlling reactive power of shunt compensator. Also a combined series-shunt compensators has been also used to control transmission power flow and bus voltage simultaneously. Different scenarios have been considered. First TCPAT, UPFS, and SVC are placed solely in transmission lines and indices have been calculated. Then two types of above controller try to improve parameters randomly. The last scenario tries to make better voltage stability index and losses by implementation of three types controller simultaneously. These scenarios are executed on typical 34-bus test system and yields efficiency in improvement of voltage profile and reduction of power losses; it also may permit an increase in power transfer capacity, maximum loading, and voltage stability margin.
Inter-frame Collusion Attack in SS-N Video Watermarking System

Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.

Influence of Cell-free Proteins in the Nucleation of CaCO3 Crystals in Calcified Endoskeleton
Calcite aCalcite and aragonite are the two common polymorphs of CaCO3 observed as biominerals. It is universal that the sea water contents a high Mg2+ (50mM) relative to Ca2+ (10mM). In vivo crystallization, Mg2+ inhibits calcite formation. For this reason, stony corals skeleton may be formed only aragonite crystals in the biocalcification. It is special in case of soft corals of which formed only calcite crystal; however, this interesting phenomenon, still uncharacterized in the marine environment, has been explored in this study using newly purified cell-free proteins isolated from the endoskeletal sclerites of soft coral. By recording the decline of pH in vitro, the control of CaCO3 nucleation and crystal growth by the cellfree proteins was revealed. Using Atomic Force Microscope, here we find that these endoskeletal cell-free proteins significantly design the morphological shape in the molecular-scale kinetics of crystal formation and those proteins act as surfactants to promote ion attachment at calcite steps.nd aragonite are the two common polymorphs of CaCO3 observed as biominerals. It is universal that the sea water contents a high Mg2+ (50mM) relative to Ca2+ (10mM). In vivo crystallization, Mg2+ inhibits calcite formation. For this reason, stony corals skeleton may be formed only aragonite crystals in the biocalcification. It is special in case of soft corals of which formed only calcite crystal; however, this interesting phenomenon, still uncharacterized in the marine environment, has been explored in this study using newly purified cell-free proteins isolated from the endoskeletal sclerites of soft coral. By recording the decline of pH in vitro, the control of CaCO3 nucleation and crystal growth by the cell-free proteins was revealed. Using Atomic Force Microscope, here we find that these endoskeletal cell-free proteins significantly design the morphological shape in the molecular-scale kinetics of crystal formation and those proteins act as surfactants to promote ion attachment at calcite steps. KeywordsBiomineralization, Calcite, Cell-free protein, Soft coral
Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods
Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.
Fusion Classifier for Open-Set Face Recognition with Pose Variations

A fusion classifier composed of two modules, one made by a hidden Markov model (HMM) and the other by a support vector machine (SVM), is proposed to recognize faces with pose variations in open-set recognition settings. The HMM module captures the evolution of facial features across a subject-s face using the subject-s facial images only, without referencing to the faces of others. Because of the captured evolutionary process of facial features, the HMM module retains certain robustness against pose variations, yielding low false rejection rates (FRR) for recognizing faces across poses. This is, however, on the price of poor false acceptance rates (FAR) when recognizing other faces because it is built upon withinclass samples only. The SVM module in the proposed model is developed following a special design able to substantially diminish the FAR and further lower down the FRR. The proposed fusion classifier has been evaluated in performance using the CMU PIE database, and proven effective for open-set face recognition with pose variations. Experiments have also shown that it outperforms the face classifier made by HMM or SVM alone.

Targeting the Pulmonary Delivery via Optimizing Physicochemical Characteristics of Instilled Liquid and Exploring Distribution of Produced Liquids by Bench-Top Models and Scintigraphy of Rabbits- Lungs
We aimed to investigate how can target and optimize pulmonary delivery distribution by changing physicochemical characteristics of instilled liquid.Therefore, we created a new liquids group: a. eligible for desired distribution within lung because of assorted physicochemical characteristics b. capable of being augmented with a broad range of chemicals inertly c. no interference on respiratory function d. compatible with airway surface liquid We developed forty types of new liquid,were composed of Carboxymethylcellulose sodium,Glycerin and different types of Polysorbates.Viscosity was measured using a Programmable Rheometer and surface tension by KRUSS Tensiometer.We subsequently examined the liquids and delivery protocols by simple and branched glass capillary tube models of airways.Eventually,we explored pulmonary distribution of liquids being augmented with technetium-99m in mechanically ventilated rabbits.We used a single head large field of view gamma camera.Kinematic viscosity between 0.265Stokes and 0.289Stokes,density between 1g/cm3 and 1.5g/cm3 and surface tension between 25dyn/cm and 35dyn/cm were the most acceptable.
XPM Response of Multiple Quantum Well chirped DFB-SOA All Optical Flip-Flop Switching

In this paper, based on the coupled-mode and carrier rate equations, derivation of a dynamic model and numerically analysis of a MQW chirped DFB-SOA all-optical flip-flop is done precisely. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the DFB-SOA all optical flip flop. We have shown that strained MQW active region in under an optimized condition into a DFB-SOA with chirped grating can improve the switching ON speed limitation in such a of the device, significantly while the fall time is increased. The values of the rise times for such an all optical flip-flop, are obtained in an optimized condition, areas tr=255ps.

A Framework for Ranking Quality of Information on Weblog
The vast amount of information on the World Wide Web is created and published by many different types of providers. Unlike books and journals, most of this information is not subject to editing or peer review by experts. This lack of quality control and the explosion of web sites make the task of finding quality information on the web especially critical. Meanwhile new facilities for producing web pages such as Blogs make this issue more significant because Blogs have simple content management tools enabling nonexperts to build easily updatable web diaries or online journals. On the other hand despite a decade of active research in information quality (IQ) there is no framework for measuring information quality on the Blogs yet. This paper presents a novel experimental framework for ranking quality of information on the Weblog. The results of data analysis revealed seven IQ dimensions for the Weblog. For each dimension, variables and related coefficients were calculated so that presented framework is able to assess IQ of Weblogs automatically.
Run-off Storage in Sand Reservoirs as an Alternative Source of Water Supply for Rura land Semi-arid areas of South Africa
Abstraction of water from the dry river sand-beds is well-known as an alternative source of water during dry seasons. Internally, because of the form of sand particles, voids are created which can store water in the riverbeds. Large rivers are rare in South Africa. Many rivers are sand river types and without water during the prolonged dry periods. South Africa has not taken full advantage of water storage in sand as a solution to the growing water scarcity both in urban and rural areas. The paper reviews the benefits of run-off storage in sand reservoirs gained from other arid areas and need for adoption in rural areas of South Africa as an alternative water supply where it is probable.
Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection
A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.
Quality Fed-Batch Bioprocess Control A Case Study

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Energy Efficient Resource Allocation in Distributed Computing Systems
The problem of mapping tasks onto a computational grid with the aim to minimize the power consumption and the makespan subject to the constraints of deadlines and architectural requirements is considered in this paper. To solve this problem, we propose a solution from cooperative game theory based on the concept of Nash Bargaining Solution. The proposed game theoretical technique is compared against several traditional techniques. The experimental results show that when the deadline constraints are tight, the proposed technique achieves superior performance and reports competitive performance relative to the optimal solution.
Effect of Friction Models on Stress Distribution of Sheet Materials during V-Bending Process
In a metal forming process, the friction between the material and the tools influences the process by modifying the stress distribution of the workpiece. This frictional behaviour is often taken into account by using a constant coefficient of friction in the finite element simulations of sheet metal forming processes. However, friction coefficient varies in time and space with many parameters. The Stribeck friction model is investigated in this study to predict springback behaviour of AA6061-T4 sheets during V-bending process. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The plane-strain bending process is simulated in ABAQUS/Standard. We compared the computed punch load-stroke curves and springback related to the constant coefficient of friction with the defined friction model. The results clearly showed that the new friction model provides better agreement between experiments and results of numerical simulations. The influence of friction models on stress distribution in the workpiece is also studied numerically
Dispenser Longitudinal Movement ControlDesign Based on Auto - Disturbances –Rejection - Controller

Based on the feature of model disturbances and uncertainty being compensated dynamically in auto – disturbances-rejection-controller (ADRC), a new method using ADRC is proposed for the decoupling control of dispenser longitudinal movement in big flight envelope. Developed from nonlinear model directly, ADRC is especially suitable for dynamic model that has big disturbances. Furthermore, without changing the structure and parameters of the controller in big flight envelope, this scheme can simplify the design of flight control system. The simulation results in big flight envelope show that the system achieves high dynamic performance, steady state performance and the controller has strong robustness.

En-Face Optical Coherence Tomography Combined with Fluorescence in Material Defects Investigations for Ceramic Fixed Partial Dentures
Optical Coherence Tomography (OCT) combined with the Confocal Microscopy, as a noninvasive method, permits the determinations of materials defects in the ceramic layers depth. For this study 256 anterior and posterior metal and integral ceramic fixed partial dentures were used, made with Empress (Ivoclar), Wollceram and CAD/CAM (Wieland) technology. For each investigate area 350 slices were obtain and a 3D reconstruction was perform from each stuck. The Optical Coherent Tomography, as a noninvasive method, can be used as a control technique in integral ceramic technology, before placing those fixed partial dentures in the oral cavity. The purpose of this study is to evaluate the capability of En face Optical Coherence Tomography (OCT) combined with a fluorescent method in detection and analysis of possible material defects in metalceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.
En-Face Optical Coherence Tomography and Fluorescence in Evaluation of Orthodontic Interfaces
Bonding has become a routine procedure in several dental specialties – from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods – optical coherence tomography (OCT), fluorescence OCT and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth. The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT, fluorescence OCT and CM are useful in orthodontic bonding investigations.
Research on the Micro Pattern forming of Spiral Grooves in a Dynamic Thrust Bearing
This paper deals with a novel technique for the fabrication of Spiral grooves in a dynamic thrust bearing. The main scheme proposed in this paper is to fabricate the microgrooves using desktop forming system. This process has advantages compared to the conventional electro-chemical machining in the viewpoint of a higher productivity. For this reason, a new testing apparatus is designed and built for press forming microgrooves on a surface of the thrust bearing. The material used in this study is sintered Cu-Fe alloy. The effects of the forming load on the performance of micro press forming are experimentally investigated. From the experimental results, formed depths are closed to the target ones with increasing the forming load.
Fuzzy Controller Design for Ball and Beam System with an Improved Ant Colony Optimization
In this paper, an improved ant colony optimization (ACO) algorithm is proposed to enhance the performance of global optimum search. The strategy of the proposed algorithm has the capability of fuzzy pheromone updating, adaptive parameter tuning, and mechanism resetting. The proposed method is utilized to tune the parameters of the fuzzy controller for a real beam and ball system. Simulation and experimental results indicate that better performance can be achieved compared to the conventional ACO algorithms in the aspect of convergence speed and accuracy.
Absorption of CO2 in EAF Reducing Slag from Stainless Steel Making Process by Wet Grinding
In the current study, we have conducted an experimental investigation on the utilization of electronic arc furnace (EAF) reducing slag for the absorption of CO2 via wet grinding method. It was carried out by various grinding conditions. The slag was ground in the vibrating ball mill in the presence of CO2 and pure water under ambient temperature. The reaction behavior was monitored with constant pressure method, and the changes of experimental systems volume as a function of grinding time were measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption was significantly increased in the case of wet grinding compare to the dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, weight of slag and initial pressure increased. However, it was decreased when the amount of water exceeds 200ml and when smaller balls were used. The absorption of CO2 occurred simultaneously with the start of the grinding and it stopped when the grinding was stopped. According to this research, the CO2 reacted with the CaO inside the slag, forming CaCO3.
Free Flapping Vibration of Rotating Inclined Euler Beams
A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.
A New Approach to Image Segmentation via Fuzzification of Rènyi Entropy of Generalized Distributions
In this paper, we propose a novel approach for image segmentation via fuzzification of Rènyi Entropy of Generalized Distributions (REGD). The fuzzy REGD is used to precisely measure the structural information of image and to locate the optimal threshold desired by segmentation. The proposed approach draws upon the postulation that the optimal threshold concurs with maximum information content of the distribution. The contributions in the paper are as follow: Initially, the fuzzy REGD as a measure of the spatial structure of image is introduced. Then, we propose an efficient entropic segmentation approach using fuzzy REGD. However the proposed approach belongs to entropic segmentation approaches (i.e. these approaches are commonly applied to grayscale images), it is adapted to be viable for segmenting color images. Lastly, diverse experiments on real images that show the superior performance of the proposed method are carried out.
Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM
It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.
A new Adaptive Approach for Histogram based Mouth Segmentation
The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.
Synchronization between the Slow Oscillations in the Human Cardiovascular System
Synchronization between the slow oscillations of heart rate and blood pressure having in humans a basic frequency close to 0.1 Hz is investigated. A method is proposed for quantitative estimation of synchronization between these oscillating processes based on calculation of relative time of phase synchronization of oscillations. It is shown that healthy subjects exhibit in average substantially longer epochs of synchronization between the slow oscillations in heart rate and blood pressure than patients after acute myocardial infarction
One-DOF Precision Position Control using the Combined Piezo-VCM Actuator

This paper presents the control performance of a high-precision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of-freedom (DOF) experimental setup was configured to examine the fundamental characteristics, and the control performance was effectively demonstrated by using a switching controller. In rough positioning state, an integral variable structure controller (IVSC) was used for the VCM to conduct long range of operation; in precision positioning state, an impact force controller (IFC) for the PZT actuator coupled with presliding states of the sliding table was used to obtain high-precision position control and achieve both forward and backward actuations. The experimental results showed that the sliding table having a mass of 881g and with a preload of 10 N was successfully positioned within the positioning accuracy of 10 nm in both forward and backward position controls.

High Performance in Parallel Data Integration: An Empirical Evaluation of the Ratio Between Processing Time and Number of Physical Nodes

Many studies have shown that parallelization decreases efficiency [1], [2]. There are many reasons for these decrements. This paper investigates those which appear in the context of parallel data integration. Integration processes generally cannot be allocated to packages of identical size (i. e. tasks of identical complexity). The reason for this is unknown heterogeneous input data which result in variable task lengths. Process delay is defined by the slowest processing node. It leads to a detrimental effect on the total processing time. With a real world example, this study will show that while process delay does initially increase with the introduction of more nodes it ultimately decreases again after a certain point. The example will make use of the cloud computing platform Hadoop and be run inside Amazon-s EC2 compute cloud. A stochastic model will be set up which can explain this effect.

Development of Autonomous Line-Following Soccer Robots
The main objective of this project is to build an autonomous microcontroller-based mobile robot for a local robot soccer competition. The black competition field is equipped with white lines to serve as the guidance path for competing robots. Two prototypes of soccer robot embedded with the Basic Stamp II microcontroller have been developed. Two servo motors are used as the drive train for the first prototype whereas the second prototype uses two DC motors as its drive train. To sense the lines, lightdependent resistors (LDRs) supply the analog inputs for the microcontroller. The performances of both prototypes are evaluated. The DC motor-driven robot has produced better trajectory control over the one using servo motors and has brought the team into the final round.
Motion Detection Techniques Using Optical Flow
Motion detection is very important in image processing. One way of detecting motion is using optical flow. Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. The method used for finding the optical flow in this project is assuming that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. This technique is later used in developing software for motion detection which has the capability to carry out four types of motion detection. The motion detection software presented in this project also can highlight motion region, count motion level as well as counting object numbers. Many objects such as vehicles and human from video streams can be recognized by applying optical flow technique.
Development of an Efficient CVT using Electromecanical System
Continuously variable transmission (CVT) is a type of automatic transmission that can change the gear ratio to any arbitrary setting within the limits. The most common type of CVT operates on a pulley system that allows an infinite variability between highest and lowest gears with no discrete steps. However, the current CVT system with hydraulic actuation method suffers from the power loss. It needs continuous force for the pulley to clamp the belt and hold the torque resulting in large amount of energy consumption. This study focused on the development of an electromechanical actuated control CVT to eliminate the problem that faced by the existing CVT. It is conducted with several steps; computing and selecting the appropriate sizing for stroke length, lead screw system and etc. From the visual observation it was found that the CVT system of this research is satisfactory.
An efficient Activity Network Reduction Algorithm based on the Label Correcting Tracing Algorithm
When faced with stochastic networks with an uncertain duration for their activities, the securing of network completion time becomes problematical, not only because of the non-identical pdf of duration for each node, but also because of the interdependence of network paths. As evidenced by Adlakha & Kulkarni [1], many methods and algorithms have been put forward in attempt to resolve this issue, but most have encountered this same large-size network problem. Therefore, in this research, we focus on network reduction through a Series/Parallel combined mechanism. Our suggested algorithm, named the Activity Network Reduction Algorithm (ANRA), can efficiently transfer a large-size network into an S/P Irreducible Network (SPIN). SPIN can enhance stochastic network analysis, as well as serve as the judgment of symmetry for the Graph Theory.
Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices
The utilization of renewable energy sources in electric power systems is increasing quickly because of public apprehensions for unpleasant environmental impacts and increase in the energy costs involved with the use of conventional energy sources. Despite the application of these energy sources can considerably diminish the system fuel costs, they can also have significant influence on the system reliability. Therefore an appropriate combination of the system reliability indices level and capital investment costs of system is vital. This paper presents a hybrid wind/photovoltaic plant, with the aim of supplying IEEE reliability test system load pattern while the plant capital investment costs is minimized by applying a hybrid particle swarm optimization (PSO) / harmony search (HS) approach, and the system fulfills the appropriate level of reliability.
Roundness Deviation Measuring Strategy at Coordination Measuring Machines and Conventional Machines
Today technological process makes possible surface control of producing parts which is needful for product quality guarantee. Geometrical structure of part surface includes form, proportion, accuracy to shape, accuracy to size, alignment and surface topography (roughness, waviness, etc.). All these parameters are dependence at technology, production machine parameters, material properties, but also at human, etc. Every parameters approves at total part accuracy, it is means at accuracy to shape. One of the most important accuracy to shape element is roundness. This paper will be deals by comparison of roughness deviations at coordination measuring machines and at special single purpose machines. Will describing measuring by discreet method (discontinuous) and scanning method (continuous) at coordination measuring machines and confrontation with reference method using at single purpose machines.
A Novel Recursive Multiplierless Algorithm for 2-D DCT
In this paper, a recursive algorithm for the computation of 2-D DCT using Ramanujan Numbers is proposed. With this algorithm, the floating-point multiplication is completely eliminated and hence the multiplierless algorithm can be implemented using shifts and additions only. The orthogonality of the recursive kernel is well maintained through matrix factorization to reduce the computational complexity. The inherent parallel structure yields simpler programming and hardware implementation and provides log 1 2 3 2 N N-N+ additions and N N 2 log 2 shifts which is very much less complex when compared to other recent multiplierless algorithms.
Pyrolysis of Rice Husk in a Fixed Bed Reactor
Fixed-bed slow pyrolysis experiments of rice husk have been conducted to determine the effect of pyrolysis temperature, heating rate, particle size and reactor length on the pyrolysis product yields. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 0.60-1.18 mm. The optimum process conditions for maximum liquid yield from the rice husk pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 500°C, particle size of 1.18-1.80 mm, with a heating rate of 60°C/min in a 300 mm length reactor. The obtained yield of, liquid, gas and solid were found be in the range of 22.57-31.78 %, 27.75-42.26 % and 34.17-42.52 % (all weight basics) respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and reactor length. The functional groups and chemical compositions present in the liquid obtained at optimum conditions were identified by Fourier Transform-Infrared (FT-IR) spectroscopy and Gas Chromatography/ Mass Spectroscopy (GC/MS) analysis respectively.
Water Pollution in Soshanguve Environs of South Africa
Surface water pollution is one of the serious environmental problems in rural areas of South Africa due to discharge of household waste into the streams, turning them into open sewers. In this study, samples of water were collected from a stream in Soshanguve and analysed. The result showed that pollution in the area was caused by man and its activities. The water quality in the area was found to have deterioted significantly after water runoff from farms and household wastes. The result shows, fertilizer runoff contributes 50% of the pollution while pesticides and sediments contribute up to 10% respectively in the streams, while household waste contributes up to 30%. This study gives an outline of the sources of water pollution in the area and provides a process of creating a clean and unpolluted environment for Soshanguve community in Pretoria north in order to achieve the 7th aim of the millennium development goals by 2015, which is ensuring environmental sustainability.
A Matrix Evaluation Model for Sustainability Assessment of Manufacturing Technologies

Technology assessment is a vital part of decision process in manufacturing, particularly for decisions on selection of new sustainable manufacturing processes. To assess these processes, a matrix approach is introduced and sustainability assessment models are developed. Case studies show that the matrix-based approach provides a flexible and practical way for sustainability evaluation of new manufacturing technologies such as those used in surface coating. The technology assessment of coating processes reveals that compared with powder coating, the sol-gel coating can deliver better technical, economical and environmental sustainability with respect to the selected sustainability evaluation criteria for a decorative coating application of car wheels.

Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.
Selective Mutation for Genetic Algorithms
In this paper, we propose a selective mutation method for improving the performances of genetic algorithms. In selective mutation, individuals are first ranked and then additionally mutated one bit in a part of their strings which is selected corresponding to their ranks. This selective mutation helps genetic algorithms to fast approach the global optimum and to quickly escape local optima. This results in increasing the performances of genetic algorithms. We measured the effects of selective mutation with four function optimization problems. It was found from extensive experiments that the selective mutation can significantly enhance the performances of genetic algorithms.
A Tool for Modeling Slope Instability Triggered by Piping
The paper deals with the analysis of triggering conditions and evolution processes of piping phenomena, in relation to both mechanical and hydraulic aspects. In particular, the aim of the study is to predict slope instabilities triggered by piping, analysing the conditions necessary for a flow failure to occur. Really, the mechanical effect involved in the loads redistribution around the pipe is coupled to the drainage process arising from higher permeability of the pipe. If after the pipe formation, the drainage goes prevented for pipe clogging, the porewater pressure increase can lead to the failure or even the liquefaction, with a subsequent flow slide. To simulate the piping evolution and to verify relevant stability conditions, a iterative coupled modelling approach has been pointed out. As example, the proposed tool has been applied to the Stava Valley disaster (July, 1985), demonstrating that piping might be one of triggering phenomena of the tailings dams collapse.
The Effect of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture
Mycophenolic acid “MPA" is a secondary metabolite of Penicillium bervicompactum with antibiotic and immunosuppressive properties. In this study, fermentation process was established for production of mycophenolic acid by Penicillium bervicompactum MUCL 19011 in shake flask. The maximum MPA production, product yield and productivity were 1.379 g/L, 18.6 mg/g glucose and 4.9 mg/L.h respectively. Glucose consumption, biomass and MPA production profiles were investigated during fermentation time. It was found that MPA production starts approximately after 180 hours and reaches to a maximum at 280 h. In the next step, the effects of methionine and acetate concentrations on MPA production were evaluated. Maximum MPA production, product yield and productivity (1.763 g/L, 23.8 mg/g glucose and 6.30 mg/L. h respectively) were obtained with using 2.5 g/L methionine in culture medium. Further addition of methionine had not more positive effect on MPA production. Finally, results showed that the addition of acetate to the culture medium had not any observable effect on MPA production
Elimination Noise by Adaptive Wavelet Threshold

Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.

Performance Analysis of Flooding Attack Prevention Algorithm in MANETs
The lack of any centralized infrastructure in mobile ad hoc networks (MANET) is one of the greatest security concerns in the deployment of wireless networks. Thus communication in MANET functions properly only if the participating nodes cooperate in routing without any malicious intention. However, some of the nodes may be malicious in their behavior, by indulging in flooding attacks on their neighbors. Some others may act malicious by launching active security attacks like denial of service. This paper addresses few related works done on trust evaluation and establishment in ad hoc networks. Related works on flooding attack prevention are reviewed. A new trust approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate and prevent flooding attacks in an ad hoc environment. The performance of the trust algorithm is tested in an ad hoc network implementing the Ad hoc On-demand Distance Vector (AODV) protocol.
Adaptive Block State Update Method for Separating Background
In this paper, we proposed the robust mobile object detection method for light effect in the night street image block based updating reference background model using block state analysis. Experiment image is acquired sequence color video from steady camera. When suddenly appeared artificial illumination, reference background model update this information such as street light, sign light. Generally natural illumination is change by temporal, but artificial illumination is suddenly appearance. So in this paper for exactly detect artificial illumination have 2 state process. First process is compare difference between current image and reference background by block based, it can know changed blocks. Second process is difference between current image-s edge map and reference background image-s edge map, it possible to estimate illumination at any block. This information is possible to exactly detect object, artificial illumination and it was generating reference background more clearly. Block is classified by block-state analysis. Block-state has a 4 state (i.e. transient, stationary, background, artificial illumination). Fig. 1 is show characteristic of block-state respectively [1]. Experimental results show that the presented approach works well in the presence of illumination variance.
Classification and Analysis of Risks in Software Engineering

Despite various methods that exist in software risk management, software projects have a high rate of failure. When complexity and size of the projects are increased, managing software development becomes more difficult. In these projects the need for more analysis and risk assessment is vital. In this paper, a classification for software risks is specified. Then relations between these risks using risk tree structure are presented. Analysis and assessment of these risks are done using probabilistic calculations. This analysis helps qualitative and quantitative assessment of risk of failure. Moreover it can help software risk management process. This classification and risk tree structure can apply to some software tools.

Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment
The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.
A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G
This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to transmit the real time vehicle system status. Finally, vehicle status browser could show the remote vehicle status including vehicle speed, engine rpm, battery voltage, engine coolant temperature, and diagnostic trouble codes. According to the experimental results, the proposed system can help fleet managers and car knockers to understand the remote vehicle status. Therefore this system can decrease the time of fleet management and vehicle repair due to the fleet managers and car knockers who find the diagnostic trouble messages in time.
Utilization of EAF Reducing Slag from Stainless Steelmaking Process as a Sorbent for CO2
In this study, an experimental investigation was carried out to fix CO2 into the electronic arc furnace (EAF) reducing slag from stainless steelmaking process under wet grinding. The slag was ground by the vibrating ball mill with the CO2 and pure water. The reaction behavior was monitored with constant pressure method, and the change of CO2 volume in the experimental system with grinding time was measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption under wet grinding was significantly larger than that under dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, the amount of slag, the diameter of alumina ball and the initial pressure of CO2 increased. However, the initial absorption rate was scarcely influenced by the experimental conditions except for the initial CO2 pressure. According to this research, the CO2 reacted with the CaO inside the slag to form CaCO3.
Calculating Strain Energy in Multi-Surface Models of Cyclic Plasticity
When considering the development of constitutive equations describing the behavior of materials under cyclic plastic strains, different kinds of formulations can be adopted. The primary intention of this study is to develop computer programming of plasticity models to accurately predict the life of engineering components. For this purpose, the energy or cyclic strain is computed in multi-surface plasticity models in non-proportional loading and to present their procedures and codes results.
Intelligent Caching in on-demand Routing Protocol for Mobile Adhoc Networks
An on-demand routing protocol for wireless ad hoc networks is one that searches for and attempts to discover a route to some destination node only when a sending node originates a data packet addressed to that node. In order to avoid the need for such a route discovery to be performed before each data packet is sent, such routing protocols must cache routes previously discovered. This paper presents an analysis of the effect of intelligent caching in a non clustered network, using on-demand routing protocols in wireless ad hoc networks. The analysis carried out is based on the Dynamic Source Routing protocol (DSR), which operates entirely on-demand. DSR uses the cache in every node to save the paths that are learnt during route discovery procedure. In this implementation, caching these paths only at intermediate nodes and using the paths from these caches when required is tried. This technique helps in storing more number of routes that are learnt without erasing the entries in the cache, to store a new route that is learnt. The simulation results on DSR have shown that this technique drastically increases the available memory for caching the routes discovered without affecting the performance of the DSR routing protocol in any way, except for a small increase in end to end delay.
Calcination Temperature of Nano MgO Effect on Base Transesterification of Palm Oil
Nano MgO has been synthesized by hydration and dehydration method by modifies the commercial MgO. The prepared MgO had been investigated as a heterogeneous base catalyst for transesterification process for biodiesel production using palm oil. TGA, FT-IR and XRD results obtained from this study lie each other and proved in the formation of nano MgO from decomposition of Mg(OH)2. This study proved that the prepared nano MgO was a better base transesterification catalyst compared to commercial MgO. The nano MgO calcined at 600ºC had gives the highest conversion of 51.3% of palm oil to biodiesel.
An Energy Efficient Protocol for Target Localization in Wireless Sensor Networks
Target tracking and localization are important applications in wireless sensor networks. In these applications, sensor nodes collectively monitor and track the movement of a target. They have limited energy supplied by batteries, so energy efficiency is essential for sensor networks. Most existing target tracking protocols need to wake up sensors periodically to perform tracking. Some unnecessary energy waste is thus introduced. In this paper, an energy efficient protocol for target localization is proposed. In order to preserve energy, the protocol fixes the number of sensors for target tracking, but it retains the quality of target localization in an acceptable level. By selecting a set of sensors for target localization, the other sensors can sleep rather than periodically wake up to track the target. Simulation results show that the proposed protocol saves a significant amount of energy and also prolongs the network lifetime.
Blind Source Separation Using Modified Gaussian FastICA
This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation.
Phase Behaviors and Fuel Properties of Bio-Oil-Diesel-Alcohol Blends

Attempt was made to improve certain characteristics of bio-oil derived from palm kernel pyrolysis by blending it with diesel fuel and alcohols. Two types of alcohol, ethanol or butanol, was used as cosolvent to stabilize the phase of ternary systems. Phase behaviors and basic fuel properties of palm kernel bio-oildiesel- alcohol systems were investigated in this study. Alcohol types showed a significant influence on the phase characteristics with palm kernel bio-oil-diesel-butanol system giving larger soluble area than that of palm kernel bio-oil-diesel-ethanol system. For fuel properties, blended fuels showed superior properties including lower values of density (~860 kg/m3 at 25°C), viscosity (~4.12 mm2/s at 40°C), carbon residue (1.02-2.53 wt%), ash (0.018-0.034 wt%) and pour point (<-25 to -7 °C), increased pH (~ 6.4) and giving reasonable heating values of 32.5-41.2 MJ/kg. To enable the prediction of some properties of fuel mixtures, the measured fuel properties including heating value, density, ash content and pH were fitted by Kay-s mixing rule, whereas the viscosities of blended fuels at different temperatures were correlated by the modified Grunberg-Nissan equation and Andrade equation.

Life Cycle Assessment of Seawater Desalinization in Western Australia
Perth will run out of available sustainable natural water resources by 2015 if nothing is done to slow usage rates, according to a Western Australian study [1]. Alternative water technology options need to be considered for the long-term guaranteed supply of water for agricultural, commercial, domestic and industrial purposes. Seawater is an alternative source of water for human consumption, because seawater can be desalinated and supplied in large quantities to a very high quality. While seawater desalination is a promising option, the technology requires a large amount of energy which is typically generated from fossil fuels. The combustion of fossil fuels emits greenhouse gases (GHG) and, is implicated in climate change. In addition to environmental emissions from electricity generation for desalination, greenhouse gases are emitted in the production of chemicals and membranes for water treatment. Since Australia is a signatory to the Kyoto Protocol, it is important to quantify greenhouse gas emissions from desalinated water production. A life cycle assessment (LCA) has been carried out to determine the greenhouse gas emissions from the production of 1 gigalitre (GL) of water from the new plant. In this LCA analysis, a new desalination plant that will be installed in Bunbury, Western Australia, and known as Southern Seawater Desalinization Plant (SSDP), was taken as a case study. The system boundary of the LCA mainly consists of three stages: seawater extraction, treatment and delivery. The analysis found that the equivalent of 3,890 tonnes of CO2 could be emitted from the production of 1 GL of desalinated water. This LCA analysis has also identified that the reverse osmosis process would cause the most significant greenhouse emissions as a result of the electricity used if this is generated from fossil fuels
An Algebra for Protein Structure Data
This paper presents an algebraic approach to optimize queries in domain-specific database management system for protein structure data. The approach involves the introduction of several protein structure specific algebraic operators to query the complex data stored in an object-oriented database system. The Protein Algebra provides an extensible set of high-level Genomic Data Types and Protein Data Types along with a comprehensive collection of appropriate genomic and protein functions. The paper also presents a query translator that converts high-level query specifications in algebra into low-level query specifications in Protein-QL, a query language designed to query protein structure data. The query transformation process uses a Protein Ontology that serves the purpose of a dictionary.
Characterization for Post-treatment Effect of Bagasse Ash for Silica Extraction
Utilization of bagasse ash for silica sources is one of the most common application for agricultural wastes and valuable biomass byproducts in sugar milling. The high percentage silica content from bagasse ash was used as silica source for sodium silicate solution. Different heating temperature, time and acid treatment were studies for silica extraction. The silica was characterized using various techniques including X-ray fluorescence, X-ray diffraction, Scanning electron microscopy, and Fourier Transform Infrared Spectroscopy method,. The synthesis conditions were optimized to obtain the bagasse ash with the maximum silica content. The silica content of 91.57 percent was achieved from heating of bagasse ash at 600°C for 3 hours under oxygen feeding and HCl treatment. The result can be used as value added for bagasse ash utilization and minimize the environmental impact of disposal problems.
Trust Based Energy Aware Reliable Reactive Protocol in Mobile Ad Hoc Networks
Trust and Energy consumption is the most challenging issue in routing protocol design for Mobile ad hoc networks (MANETs), since mobile nodes are battery powered and nodes behaviour are unpredictable. Furthermore replacing and recharging batteries and making nodes co-operative is often impossible in critical environments like military applications. In this paper, we propose a trust based energy aware routing model in MANET. During route discovery, node with more trust and maximum energy capacity is selected as a router based on a parameter called 'Reliability'. Route request from the source is accepted by a node only if its reliability is high. Otherwise, the route request is discarded. This approach forms a reliable route from source to destination thus increasing network life time, improving energy utilization and decreasing number of packet loss during transmission.
Thermodynamic Analysis of a Novel Thermal Driven Refrigeration System

Thermal-driven refrigeration systems have attracted increasing research and development interest in recent years. These systems do not cause ozone depletion and can reduce demand on electricity. The main objective of this work is to perform theoretical analyses of a thermal-driven refrigeration system using a new sorbent-sorptive pair as the working pair. The active component of sorbent is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. Based on the thermodynamic properties of the working solution, a mathematical model is introduced to analyze the system characteristics and performance. The results are used to compare with other thermal-driven refrigeration systems. It is shown that the advantages provided by this system over other absorption units include lower generator and evaporator temperatures, a higher coefficient of performance (COP). The COP is about 10 percent higher than the ones for the NH3-H2O system working at the same conditions.

Software Industrialization in Systems Integration
Today-s economy is in a permanent change, causing merger and acquisitions and co operations between enterprises. As a consequence, process adaptations and realignments result in systems integration and software development projects. Processes and procedures to execute such projects are still reliant on craftsman-ship of highly skilled workers. A generally accepted, industrialized production, characterized by high efficiency and quality, seems inevitable. In spite of this, current concepts of software industrialization are aimed at traditional software engineering and do not consider the characteristics of systems integration. The present work points out these particularities and discusses the applicability of existing industrial concepts in the systems integration domain. Consequently it defines further areas of research necessary to bring the field of systems integration closer to an industrialized production, allowing a higher efficiency, quality and return on investment.
The Radial Pulse Wave and Blood Viscosity

The aim of this study was to investigate the effect of blood viscosity on the radial pulse wave. For this, we obtained the radial pulse wave of 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed and compared by Student's T test. There are significant differences in several variables about height, time and area of the pulse wave. The first peak of the radial pulse wave was higher in abnormal high hematocrit group, but the third peak was higher and longer in normal hematocrit group. Our results suggest that the radial pulse wave can be used for diagnosis of high blood viscosity and more clinical application.

Clustering Categorical Data Using Hierarchies (CLUCDUH)
Clustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n).
Convective Heat Transfer of Viscoelastic Flow in a Curved Duct
In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.
A Reliable Secure Multicast Key Distribution Scheme for Mobile Adhoc Networks
Reliable secure multicast communication in mobile adhoc networks is challenging due to its inherent characteristics of infrastructure-less architecture with lack of central authority, high packet loss rates and limited resources such as bandwidth, time and power. Many emerging commercial and military applications require secure multicast communication in adhoc environments. Hence key management is the fundamental challenge in achieving reliable secure communication using multicast key distribution for mobile adhoc networks. Thus in designing a reliable multicast key distribution scheme, reliability and congestion control over throughput are essential components. This paper proposes and evaluates the performance of an enhanced optimized multicast cluster tree algorithm with destination sequenced distance vector routing protocol to provide reliable multicast key distribution. Simulation results in NS2 accurately predict the performance of proposed scheme in terms of key delivery ratio and packet loss rate under varying network conditions. This proposed scheme achieves reliability, while exhibiting low packet loss rate with high key delivery ratio compared with the existing scheme.
Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault
Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.
Stabilization of Nonnecessarily Inversely Stable First-Order Adaptive Systems under Saturated Input
This paper presents an indirect adaptive stabilization scheme for first-order continuous-time systems under saturated input which is described by a sigmoidal function. The singularities are avoided through a modification scheme for the estimated plant parameter vector so that its associated Sylvester matrix is guaranteed to be non-singular and then the estimated plant model is controllable. The modification mechanism involves the use of a hysteresis switching function. An alternative hybrid scheme, whose estimated parameters are updated at sampling instants is also given to solve a similar adaptive stabilization problem. Such a scheme also uses hysteresis switching for modification of the parameter estimates so as to ensure the controllability of the estimated plant model.
An Attribute-Centre Based Decision Tree Classification Algorithm
Decision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.
Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures
In this paper, we represent protein structure by using graph. A protein structure database will become a graph database. Each graph is represented by a spectral vector. We use Jacobi rotation algorithm to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph. To measure the similarity between two graphs, we calculate the Euclidean distance between two graph spectral vectors. To cluster the graphs, we use M-tree with the Euclidean distance to cluster spectral vectors. Besides, M-tree can be used for graph searching in graph database. Our proposal method was tested with graph database of 100 graphs representing 100 protein structures downloaded from Protein Data Bank (PDB) and we compare the result with the SCOP hierarchical structure.
Influence of Thermal and Mechanical Shocks to Cutting Edge Tool Life
This paper deals with the problem of thermal and mechanical shocks, which rising during operation, mostly at interrupted cut. Here will be solved their impact on the cutting edge tool life, the impact of coating technology on resistance to shocks and experimental determination of tool life in heating flame. Resistance of removable cutting edges against thermal and mechanical shock is an important indicator of quality as well as its abrasion resistance. Breach of the edge or its crumble may occur due to cyclic loading. We can observe it not only during the interrupted cutting (milling, turning areas abandoned hole or slot), but also in continuous cutting. This is due to the volatility of cutting force on cutting. Frequency of the volatility in this case depends on the type of rising chips (chip size element). For difficult-to-machine materials such as austenitic steel particularly happened at higher cutting speeds for the localization of plastic deformation in the shear plane and for the inception of separate elements substantially continuous chips. This leads to variations of cutting forces substantially greater than for other types of steel.
Pomelo Peel: Agricultural Waste for Biosorption of Cadmium Ions from Aqueous Solutions

The ability of pomelo peel, a natural biosorbent, to remove Cd(II) ions from aqueous solution by biosorption was investigated. The experiments were carried out by batch method at 25 °C. The influence of solution pH, initial cadmium ion concentrations and contact times were evaluated. Cadmium ion removal increased significantly as the pH of the solution increased from pH 1 to pH 5. At pH 5, the cadmium ion removal reached a maximum value. The equilibrium process was described well by the Langmuir isotherm model, with a maximum biosorption capacity of 21.83 mg/g. The biosorption was relatively quick, (approx. 20 min). Biosorption kinetics followed a pseudo-second-order model. The result showed that pomelo peel was effective as a biosorbent for removing cadmium ions from aqueous solution. It is a low cost material that shows potential to be applied in wastewater technology for remediation of heavy metal contamination.

Performance Analysis of a Free-Space Optical Code Division Multiple Access through Atmospheric Turbulence Channel
In this paper, the effect of atmospheric turbulence on bit error probability in free-space optical CDMA scheme with Sequence Inverse Keyed (SIK) optical correlator receiver is analyzed. Here Intensity Modulation scheme is considered for transmission. The turbulence induced fading is described by the newly introduced gamma-gamma pdf[1] as a tractable mathematical model for atmospheric turbulence. Results are evaluated with Gold and Kasami code & it is shown that Gold sequence can be used for more efficient transmission than Kasami sequence in an atmospheric turbulence channel.
Methodology of Restoration Research in Czech Republic

Restoration research has become important on principle recently in Czech Republic. The reason is simple. More than 70 % of mined brown coal comes from the North Bohemian Basin these days. Open cast brown coal mining has lead to large damage on the landscape. Reclamation of phytotoxic areas is one of the serious problems in the North Bohemian Basin. It mainly concerns the areas with the occurrence of overburden rocks from the coal bed enriched with coal. The presented paper includes the characteristics of the important phytotoxic areas and the methodology of their reclamation. The results are documented with the long term monitoring of physical, mineralogical, chemical and pedological parameters of rocks in the testing areas.

Influence of High Speed Parameters on the Quality of Machined Surface

The contribution is dealing with the influence of high speed parameters on the quality of machined surface. In general the principle of high speed cutting lies in achieving faster machine times with concurrent increase in accuracy and quality of the machined areas in largely irregular, mathematically hard to define shapes. High speed machining is a highly effective method of machining with the following goals: increasing of machining productivity, increasing of quality of the machined surface, improving of machining economy, improving of ecological aspects of machining. This article is based on an experiment performed by the Department of Machining and Assembly of the Faculty of Mechanical Engineering of VŠBTechnical University of Ostrava.

Interaction between Respiration and Low-Frequency Cardiovascular Rhythms
The interaction between respiration and low-frequency rhythms of the cardiovascular system is studied. The obtained results count in favor of the hypothesis that low-frequency rhythms in blood pressure and R-R intervals are generated in different central neural structures involved in the autonomic control of the cardiovascular systems.
Computational Networks for Knowledge Representation
In the artificial intelligence field, knowledge representation and reasoning are important areas for intelligent systems, especially knowledge base systems and expert systems. Knowledge representation Methods has an important role in designing the systems. There have been many models for knowledge such as semantic networks, conceptual graphs, and neural networks. These models are useful tools to design intelligent systems. However, they are not suitable to represent knowledge in the domains of reality applications. In this paper, new models for knowledge representation called computational networks will be presented. They have been used in designing some knowledge base systems in education for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the program for solving problems about alternating current in physics.
Vibration Reduction Module with Flexure Springs for Personal Tools

In the various working field, vibration may cause injurious to human body. Especially, in case of the vibration which is constantly and repeatedly transferred to the human. That gives serious physical problem, so called, Reynaud phenomenon. In this paper, we propose a vibration transmissibility reduction module with flexure mechanism for personal tools. At first, we select a target personal tool, grass cutter, and measure the level of vibration transmissibility on the hand. And then, we develop the concept design of the module that has stiffness for reduction the vibration transmissibility more than 20%, where the vibration transmissibility is measured with an accelerometer. In addition, the vibration reduction can be enhanced when the interior gap between inner and outer body is filled with silicone gel. This will be verified by the further experiment.

A Fast Sensor Relocation Algorithm in Wireless Sensor Networks
Sensor relocation is to repair coverage holes caused by node failures. One way to repair coverage holes is to find redundant nodes to replace faulty nodes. Most researches took a long time to find redundant nodes since they randomly scattered redundant nodes around the sensing field. To record the precise position of sensor nodes, most researches assumed that GPS was installed in sensor nodes. However, high costs and power-consumptions of GPS are heavy burdens for sensor nodes. Thus, we propose a fast sensor relocation algorithm to arrange redundant nodes to form redundant walls without GPS. Redundant walls are constructed in the position where the average distance to each sensor node is the shortest. Redundant walls can guide sensor nodes to find redundant nodes in the minimum time. Simulation results show that our algorithm can find the proper redundant node in the minimum time and reduce the relocation time with low message complexity.
On Stability of Stiffened Cylindrical Shells with Varying Material Properties
The static stability analysis of stiffened functionally graded cylindrical shells by isotropic rings and stringers subjected to axial compression is presented in this paper. The Young's modulus of the shell is taken to be function of the thickness coordinate. The fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical axial loads. The effects of material properties, geometric size and different material coefficient on the critical axial loads are examined. The analytical results are compared and validated using the finite element model.
Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles
In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%
Subpixel Detection of Circular Objects Using Geometric Property
In this paper, we propose a method for detecting circular shapes with subpixel accuracy. First, the geometric properties of circles have been used to find the diameters as well as the circumference pixels. The center and radius are then estimated by the circumference pixels. Both synthetic and real images have been tested by the proposed method. The experimental results show that the new method is efficient.
Interactive Compromise Approach with Particle Swarm Optimization for Environmental/Economic Power Dispatch
In this paper, an Interactive Compromise Approach with Particle Swarm Optimization(ICA-PSO) is presented to solve the Economic Emission Dispatch(EED) problem. The cost function and emission function are modeled as the nonsmooth functions, respectively. The bi-objective including both the minimization of cost and emission is formulated in this paper. ICA-PSO is proposed to solve EED problem for finding a better compromise solution. The solution methodology can offer a global or near-global solution for decision-making requirements. The effectiveness and efficiency of ICA-PSO are demonstrated by a sample test system. Test results can be shown that the proposed method provide a practical and flexible framework for power dispatch.
Joint Adaptive Block Matching Search (JABMS) Algorithm
In this paper a new Joint Adaptive Block Matching Search (JABMS) algorithm is proposed to generate motion vector and search a best match macro block by classifying the motion vector movement based on prediction error. Diamond Search (DS) algorithm generates high estimation accuracy when motion vector is small and Adaptive Rood Pattern Search (ARPS) algorithm can handle large motion vector but is not very accurate. The proposed JABMS algorithm which is capable of considering both small and large motions gives improved estimation accuracy and the computational cost is reduced by 15.2 times compared with Exhaustive Search (ES) algorithm and is 1.3 times less compared with Diamond search algorithm.
Cloud Computing Initiative using Modified Ant Colony Framework
Scheduling of diversified service requests in distributed computing is a critical design issue. Cloud is a type of parallel and distributed system consisting of a collection of interconnected and virtual computers. It is not only the clusters and grid but also it comprises of next generation data centers. The paper proposes an initial heuristic algorithm to apply modified ant colony optimization approach for the diversified service allocation and scheduling mechanism in cloud paradigm. The proposed optimization method is aimed to minimize the scheduling throughput to service all the diversified requests according to the different resource allocator available under cloud computing environment.
Retrieval of Relevant Visual Data in Selected Machine Vision Tasks: Examples of Hardware-based and Software-based Solutions

To illustrate diversity of methods used to extract relevant (where the concept of relevance can be differently defined for different applications) visual data, the paper discusses three groups of such methods. They have been selected from a range of alternatives to highlight how hardware and software tools can be complementarily used in order to achieve various functionalities in case of different specifications of “relevant data". First, principles of gated imaging are presented (where relevance is determined by the range). The second methodology is intended for intelligent intrusion detection, while the last one is used for content-based image matching and retrieval. All methods have been developed within projects supervised by the author.

Case Studies of CSAMT Method Applied to Study of Complex Rock Mass Structure and Hidden Tectonic
In projects like waterpower, transportation and mining, etc., proving up the rock-mass structure and hidden tectonic to estimate the geological body-s activity is very important. Integrating the seismic results, drilling and trenching data, CSAMT method was carried out at a planning dame site in southwest China to evaluate the stability of a deformation. 2D and imitated 3D inversion resistivity results of CSAMT method were analyzed. The results indicated that CSAMT was an effective method for defining an outline of deformation body to several hundred meters deep; the Lung Pan Deformation was stable in natural conditions; but uncertain after the future reservoir was impounded. This research presents a good case study of the fine surveying and research on complex geological structure and hidden tectonic in engineering project.
Synthesis of Unconventional Materials Using Chitosan and Crown Ether for Selective Removal of Precious Metal Ions
The polyfunctional and highly reactive bio-polymer, the chitosan was first regioselectively converted into dialkylated chitosan using dimsyl anionic solution(NaH in DMSO) and bromodecane after protecting amino groups by phthalic anhydride. The dibenzo-18-crown-6-ether, on the other hand, was converted into its carbonyl derivatives via Duff reaction prior to incorporate into chitosan by Schiff base formation. Thus formed diformylated dibenzo-18-crown-6-ether was condensed with lipophilic chitosan to prepare the novel solvent extraction reagent. The products were characterized mainly by IR and 1H-NMR. Hence, the multidentate crown ether-embedded polyfunctional bio-material was tested for extraction of Pd(II) and Pt(IV) in aqueous solution.
Thermoelastic Damping of Inextensional Hemispherical Shell
In this work, thermoelastic damping effect on the hemi- spherical shells is investigated. The material is selected silicon, and heat conduction equation for thermal flow is solved to obtain the temperature profile in which bending approximation with inextensional assumption of the model. Using the temperature profile, eigen-value analysis is performed to get the natural frequencies of hemispherical shells. Effects of mode numbers, radii and radial thicknesses of the model on the natural frequencies are analyzed in detail. Furthermore, the quality factor (Q-factor) is defined, and discussed for the ring and hemispherical shell.
The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling

The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.

Preliminary Investigation on Combustion Characteristics of Rice Husk in FBC
The experimental results on combustion of rice husk in a conical fluidized bed combustor (referred to as the conical FBC) using silica sand as the bed material are presented in this paper. The effects of excess combustion air and combustor loading as well as the sand bed height on the combustion pattern in FBC were investigated. Temperatures and gas concentrations (CO and NO) along over the combustor height as well as in the flue gas downstream from the ash collecting cyclone were measured. The results showed that the axial temperature profiles in FBC were explicitly affected by the combustor loading whereas the excess air and bed height were found to have minor influences on the temperature pattern. Meanwhile, the combustor loading and the excess air significantly affected the axial CO and NO concentration profiles; however, these profiles were almost independent of the bed height. The combustion and thermal efficiencies for this FBC were quantified for different operating conditions.
Efficient Lossless Compression of Weather Radar Data

Data compression is used operationally to reduce bandwidth and storage requirements. An efficient method for achieving lossless weather radar data compression is presented. The characteristics of the data are taken into account and the optical linear prediction is used for the PPI images in the weather radar data in the proposed method. The next PPI image is identical to the current one and a dramatic reduction in source entropy is achieved by using the prediction algorithm. Some lossless compression methods are used to compress the predicted data. Experimental results show that for the weather radar data, the method proposed in this paper outperforms the other methods.

Ranking - Convex Risk Minimization

The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.

An Analysis of Real-Time Distributed System under Different Priority Policies
A real time distributed computing has heterogeneously networked computers to solve a single problem. So coordination of activities among computers is a complex task and deadlines make more complex. The performances depend on many factors such as traffic workloads, database system architecture, underlying processors, disks speeds, etc. Simulation study have been performed to analyze the performance under different transaction scheduling: different workloads, arrival rate, priority policies, altering slack factors and Preemptive Policy. The performance metric of the experiments is missed percent that is the percentage of transaction that the system is unable to complete. The throughput of the system is depends on the arrival rate of transaction. The performance can be enhanced with altering the slack factor value. Working on slack value for the transaction can helps to avoid some of transactions from killing or aborts. Under the Preemptive Policy, many extra executions of new transactions can be carried out.
Modeling of Reusability of Object Oriented Software System
Automatic reusability appraisal is helpful in evaluating the quality of developed or developing reusable software components and in identification of reusable components from existing legacy systems; that can save cost of developing the software from scratch. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. In this research work, structural attributes of software components are explored using software metrics and quality of the software is inferred by different Neural Network based approaches, taking the metric values as input. The calculated reusability value enables to identify a good quality code automatically. It is found that the reusability value determined is close to the manual analysis used to be performed by the programmers or repository managers. So, the developed system can be used to enhance the productivity and quality of software development.
Static and Dynamic Complexity Analysis of Software Metrics
Software complexity metrics are used to predict critical information about reliability and maintainability of software systems. Object oriented software development requires a different approach to software complexity metrics. Object Oriented Software Metrics can be broadly classified into static and dynamic metrics. Static Metrics give information at the code level whereas dynamic metrics provide information on the actual runtime. In this paper we will discuss the various complexity metrics, and the comparison between static and dynamic complexity.
A Model for Estimation of Efforts in Development of Software Systems
Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.
Software Maintenance Severity Prediction for Object Oriented Systems
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.
Predicting the Impact of the Defect on the Overall Environment in Function Based Systems
There is lot of work done in prediction of the fault proneness of the software systems. But, it is the severity of the faults that is more important than number of faults existing in the developed system as the major faults matters most for a developer and those major faults needs immediate attention. In this paper, we tried to predict the level of impact of the existing faults in software systems. Neuro-Fuzzy based predictor models is applied NASA-s public domain defect dataset coded in C programming language. As Correlation-based Feature Selection (CFS) evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. So, CFS is used for the selecting the best metrics that have highly correlated with level of severity of faults. The results are compared with the prediction results of Logistic Models (LMT) that was earlier quoted as the best technique in [17]. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provide a relatively better prediction accuracy as compared to other models and hence, can be used for the modeling of the level of impact of faults in function based systems.
Mineral Activator and Physical Characteristics of Slag Cement at Anhydrous and Hydrated States
The setting agent Ca(OH)2 for activation of slag cement is used in the proportions of 0%, 2%, 4%, 6%, 8% and 10% by various methods (substitution and addition by mass of slag cement). The physical properties of slag cement activated by the calcium hydroxide at anhydrous and hydrated states (fineness, particle size distribution, consistency of the cement pastes and setting times) were studied. The activation method by the mineral activator of slag cement (latent hydraulicity) accelerates the hydration process and reduces the setting times of the cement activated.
A Model for Study of the Defects in Rolling Element Bearings at Higher Speed by Vibration Signature Analysis
The vibrations produced by a single point defect on various parts of the bearing under constant radial load are predicted by using a theoretical model. The model includes variation in the response due to the effect of bearing dimensions, rotating frequency distribution of load. The excitation forces are generated when the defects on the races strike to rolling elements. In case of the outer ring defect, the pulses generated are with periodicity of outer ring defect frequency where as for inner ring defect, the pulses are with periodicity of inner ring defect frequency. The effort has been carried out in preparing the physical model of the system. Different defect frequencies are obtained and are used to find out the amplitudes of the vibration due to excitation of the bearing parts. Increase in the radial load or severity of the defect produces a significant change in bearing signature characteristics.
A Method for Iris Recognition Based on 1D Coiflet Wavelet
There have been numerous implementations of security system using biometric, especially for identification and verification cases. An example of pattern used in biometric is the iris pattern in human eye. The iris pattern is considered unique for each person. The use of iris pattern poses problems in encoding the human iris. In this research, an efficient iris recognition method is proposed. In the proposed method the iris segmentation is based on the observation that the pupil has lower intensity than the iris, and the iris has lower intensity than the sclera. By detecting the boundary between the pupil and the iris and the boundary between the iris and the sclera, the iris area can be separated from pupil and sclera. A step is taken to reduce the effect of eyelashes and specular reflection of pupil. Then the four levels Coiflet wavelet transform is applied to the extracted iris image. The modified Hamming distance is employed to measure the similarity between two irises. This research yields the identification success rate of 84.25% for the CASIA version 1.0 database. The method gives an accuracy of 77.78% for the left eyes of MMU 1 database and 86.67% for the right eyes. The time required for the encoding process, from the segmentation until the iris code is generated, is 0.7096 seconds. These results show that the accuracy and speed of the method is better than many other methods.
Biologically Inspired Artificial Neural Cortex Architecture and its Formalism
The paper attempts to elucidate the columnar structure of the cortex by answering the following questions. (1) Why the cortical neurons with similar interests tend to be vertically arrayed forming what is known as cortical columns? (2) How to describe the cortex as a whole in concise mathematical terms? (3) How to design efficient digital models of the cortex?
Enhancement of Shape Description and Representation by Slope
Representation and description of object shapes by the slopes of their contours or borders are proposed. The idea is to capture the essence of the features that make it easier for a shape to be stored, transmitted, compared and recognized. These features must be independent of translation, rotation and scaling of the shape. A approach is proposed to obtain high performance, efficiency and to merge the boundaries into sequence of straight line segments with the fewest possible segments. Evaluation on the performance of the proposed method is based on its comparison with established method of object shape description.
Automatic Segmentation of Lung Areas in Magnetic Resonance Images
Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.
Resonant DC Link in PWM AC Chopper
This paper proposes a resonant dc link in PWM ac chopper. This can solve the spike problems and also reduce the switching loss. The configuration and PWM pattern of the proposed technique are presented. The simulation results are used to confirm the theory.
Synthesis and Analysis of Swelling and Controlled Release Behaviour of Anionic sIPN Acrylamide based Hydrogels
In modern agriculture, polymeric hydrogels are known as a component able to hold an amount of water due to their 3-dimensional network structure and their tendency to absorb water in humid environments. In addition, these hydrogels are able to controllably release the fertilisers and pesticides loaded in them. Therefore, they deliver these materials to the plants' roots and help them with growing. These hydrogels also reduce the pollution of underground water sources by preventing the active components from leaching. In this study, sIPN acrylamide based hydrogels are synthesised by using acrylamide free radical, potassium acrylate, and linear polyvinyl alcohol. Ammonium nitrate is loaded in the hydrogel as the fertiliser. The effect of various amounts of monomers and linear polymer, measured in molar ratio, on the swelling rate, equilibrium swelling, and release of ammonium nitrate is studied.
Inductance Characteristic of Annealed Titanium Dioxide on Silicon Substrate
The control of oxygen flow rate during growth of titanium dioxide by mass flow controller in DC plasma sputtering growth system is studied. The impedance of TiO2 films for inductance effect is influenced by annealing time and oxygen flow rate. As annealing time is increased, the inductance of TiO2 film is the more. The growth condition of optimum and maximum inductance for TiO2 film to serve as sensing device are oxygen flow rate of 15 sccm and large annealing time. The large inductance of TiO2 film will be adopted to fabricate the biosensor to obtain the high sensitivity of sensing in biology.
A Multivariate Moving Average Control Chart for Photovoltaic Processes
For the electrical metrics that describe photovoltaic cell performance are inherently multivariate in nature, use of a univariate, or one variable, statistical process control chart can have important limitations. Development of a comprehensive process control strategy is known to be significantly beneficial to reducing process variability that ultimately drives up the manufacturing cost photovoltaic cells. The multivariate moving average or MMA chart, is applied to the electrical metrics of photovoltaic cells to illustrate the improved sensitivity on process variability this method of control charting offers. The result show the ability of the MMA chart to expand to as any variables as needed, suggests an application with multiple photovoltaic electrical metrics being used in concert to determine the processes state of control.
Prediction of a Human Facial Image by ANN using Image Data and its Content on Web Pages
Choosing the right metadata is a critical, as good information (metadata) attached to an image will facilitate its visibility from a pile of other images. The image-s value is enhanced not only by the quality of attached metadata but also by the technique of the search. This study proposes a technique that is simple but efficient to predict a single human image from a website using the basic image data and the embedded metadata of the image-s content appearing on web pages. The result is very encouraging with the prediction accuracy of 95%. This technique may become a great assist to librarians, researchers and many others for automatically and efficiently identifying a set of human images out of a greater set of images.
Using Services Oriented Architecture to Improve Efficient Web-Services for Postgraduate Students
The main aim of this paper is to present the research findings on the solution of centralized Web-Services for students by adopting a framework and a prototype for Service Oriented Architecture (SOA) Web-Services. The current situation of students- Web-based application services has been identified and proposed an effective SOA to increase the operational efficiency of Web-Services for them it was necessary to identify the challenges in delivering a SOA technology to increase operational efficiency of Web-Services. Moreover, the SOA is an emerging concept, used for delivering efficient student SOA Web-Services. Therefore, service reusability from SOA Web-Services is provided and logically divided services into smaller services to increase reusability and modularity. In this case each service is a modular unit by itself and interoperability services.
Drilling of Glass Sheets by Abrasive Jet Machining
Drilling of glass sheets with different thicknesses have been carried out by Abrasive Jet Machining process (AJM) in order to determine its machinability under different controlling parameters of the AJM process. The present study has been introduced a mathematical model and the obtained results have been compared with that obtained from other models published earlier [1-6]. The experimental results of the present work are used to discuss the validity of the proposed model as well as the other models.
Single and Multiple Sourcing in the Auto-Manufacturing Industry
This article outlines a hybrid method, incorporating multiple techniques into an evaluation process, in order to select competitive suppliers in a supply chain. It enables a purchaser to do single sourcing and multiple sourcing by calculating a combined supplier score, which accounts for both qualitative and quantitative factors that have impact on supply chain performance.
Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game
The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.
Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises
This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local filters under the minimum mean square error criterion. The derivation of the error cross-covariances between the local receding horizon filters is the key of this paper. Simulation results of the tracking mobile robot-s motion demonstrate high accuracy and computational efficiency of the distributed fusion receding horizon filter.
Automatic Voice Classification System Based on Traditional Korean Medicine
This paper introduces an automatic voice classification system for the diagnosis of individual constitution based on Sasang Constitutional Medicine (SCM) in Traditional Korean Medicine (TKM). For the developing of this algorithm, we used the voices of 309 female speakers and extracted a total of 134 speech features from the voice data consisting of 5 sustained vowels and one sentence. The classification system, based on a rule-based algorithm that is derived from a non parametric statistical method, presents 3 types of decisions: reserved, positive and negative decisions. In conclusion, 71.5% of the voice data were diagnosed by this system, of which 47.7% were correct positive decisions and 69.7% were correct negative decisions.
Development of Synthetic Jet Air Blower for Air-breathing PEM Fuel Cell
This paper presents a synthetic jet air blower actuated by PZT for air blowing for air-breathing micro PEM fuel cell. The several factors to affect the performance of air-breathing PEM fuel cell such as air flow rate, opening ratio and cathode open type in the cathode side were studied. Especially, an air flow rate is critical condition to improve its performance. In this paper, we developed a synthetic jet air blower to supply a high stoichiometric air flow. The synthetic jet mechanism is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. The flow rate of the fabricated synthetic jet air blower was 400cc/min at 550Hz and its power consumption was very low under 0.3W. The proposed air-breathing PEM fuel cell which installed synthetic jet air blower was higher performance and stability during continuous operation than the air-breathing fuel cell without auxiliary device to supply the air. The results showed that the maximum power density was 188mW/cm2 at 400mA/cm2. This maximum power density and durability were improved more than 40% and 20%, respectively.
Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides
In this study, we sought to investigate the mercury removal efficiency of manganese oxides from natural gas. The fundamental studies on mercury removal with manganese oxides sorbents were carried out in a laboratory scale fixed bed reactor at 30 °C with a mixture of methane (20%) and nitrogen gas laden with 4.8 ppb of elemental mercury. Manganese oxides with varying surface area and crystalline phase were prepared by conventional precipitation method in this study. The effects of surface area, crystallinity and other metal oxides on mercury removal efficiency were investigated. Effect of Ag impregnation on mercury removal efficiency was also investigated. Ag supported on metal oxide such titania and zirconia as reference materials were also used in this study for comparison. The characteristics of mercury removal reaction with manganese oxide was investigated using a temperature programmed desorption (TPD) technique. Manganese oxides showed very high Hg removal activity (about 73-93% Hg removal) for first time use. Surface area of the manganese oxide samples decreased after heat-treatment and resulted in complete loss of Hg removal ability for repeated use after Hg desorption in the case of amorphous MnO2, and 75% loss of the initial Hg removal activity for the crystalline MnO2. Mercury desorption efficiency of crystalline MnO2 was very low (37%) for first time use and high (98%) after second time use. Residual potassium content in MnO2 may have some effect on the thermal stability of the adsorbed Hg species. Desorption of Hg from manganese oxides occurs at much higher temperatures (with a peak at 400 °C) than Ag/TiO2 or Ag/ZrO2. Mercury may be captured on manganese oxides in the form of mercury manganese oxide.
Hardware Approach to Solving Password Exposure Problem through Keyboard Sniff
This paper introduces a hardware solution to password exposure problem caused by direct accesses to the keyboard hardware interfaces through which a possible attacker is able to grab user-s password even where existing countermeasures are deployed. Several researches have proposed reasonable software based solutions to the problem for years. However, recently introduced hardware vulnerability problems have neutralized the software approaches and yet proposed any effective software solution to the vulnerability. Hardware approach in this paper is expected as the only solution to the vulnerability
Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation

Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.

Real Time Compensation of Machining Errors for Machine Tools NC based on Systematic Dispersion
Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing, but also the manufacturing constraints, for example geometrical defects of the machine, vibration and the wear of the cutting tool. In this paper, an experimental study on the influence of the wear of the cutting tool (systematic dispersions) is explored. This study was carried out on three stages .The first stage allows machining without elimination of dispersions (random, systematic) so the tolerances of manufacture according to total dispersions. In the second stage, the results of the first stage are filtered in such way to obtain the tolerances according to random dispersions. Finally, from the two previous stages, the systematic dispersions are generated. The objective of this study is to model by the least squares method the error of manufacture based on systematic dispersion. Finally, an approach of optimization of the manufacturing tolerances was developed for machining on a CNC machine tool
Sericin Film: Influence of Concentration on its Physical Properties
Silk sericin (SS) is a glue-like protein from silkworm cocoon. With its outstanding moisturization and activation collagen synthesis properties, silk protein is applied for wound healing. Since wound dressing in film preparation can facilitate patients- convenience and reduce risk of wound contraction, SS and polyvinyl alcohol (PVA) films were prepared with various concentrations of SS. Their physical properties such as surface density, light transmission, protein dissolution and tensile modulus were investigated. The results presented that 3% SS with 2% PVA is the best ingredient for SS film forming.
From Individual Memory to Organizational Memory (Intelligence of Organizations)
Intensive changes of environment and strong market competition have raised management of information and knowledge to the strategic level of companies. In a knowledge based economy only those organizations are capable of living which have up-to-date, special knowledge and they are able to exploit and develop it. Companies have to know what knowledge they have by taking a survey of organizational knowledge and they have to fix actual and additional knowledge in organizational memory. The question is how to identify, acquire, fix and use knowledge effectively. The paper will show that over and above the tools of information technology supporting acquisition, storage and use of information and organizational learning as well as knowledge coming into being as a result of it, fixing and storage of knowledge in the memory of a company play an important role in the intelligence of organizations and competitiveness of a company.
Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007