Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 131

Classification of Defects by the SVM Method and the Principal Component Analysis (PCA)
Analyses carried out on examples of detected defects echoes showed clearly that one can describe these detected forms according to a whole of characteristic parameters in order to be able to make discrimination between a planar defect and a volumic defect. This work answers to a problem of ultrasonics NDT like Identification of the defects. The problems as well as the objective of this realized work, are divided in three parts: Extractions of the parameters of wavelets from the ultrasonic echo of the detected defect - the second part is devoted to principal components analysis (PCA) for optimization of the attributes vector. And finally to establish the algorithm of classification (SVM, Support Vector Machine) which allows discrimination between a plane defect and a volumic defect. We have completed this work by a conclusion where we draw up a summary of the completed works, as well as the robustness of the various algorithms proposed in this study.
Simple and Advanced Models for Calculating Single-Phase Diode Rectifier Line-Side Harmonics
This paper proposes different methods for estimation of the harmonic currents of the single-phase diode bridge rectifier. Both simple and advanced methods are compared and the models are put into a context of practical use for calculating the harmonic distortion in a typical application. Finally, the different models are compared to measurements of a real application and convincing results are achieved.
WiPoD Wireless Positioning System based on 802.11 WLAN Infrastructure
This paper describes WiPoD (Wireless Position Detector) which is a pure software based location determination and tracking (positioning) system. It uses empirical signal strength measurements from different wireless access points for mobile user positioning. It is designed to determine the location of users having 802.11 enabled mobile devices in an 802.11 WLAN infrastructure and track them in real time. WiPoD is the first main module in our LBS (Location Based Services) framework. We tested K-Nearest Neighbor and Triangulation algorithms to estimate the position of a mobile user. We also give the analysis results of these algorithms for real time operations. In this paper, we propose a supportable, i.e. understandable, maintainable, scalable and portable wireless positioning system architecture for an LBS framework. The WiPoD software has a multithreaded structure and was designed and implemented with paying attention to supportability features and real-time constraints and using object oriented design principles. We also describe the real-time software design issues of a wireless positioning system which will be part of an LBS framework.
Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel

This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.

Quasi-Permutation Representations for the Group SL(2, q) when Extended by a Certain Group of Order Two

A square matrix over the complex field with non- negative integral trace is called a quasi-permutation matrix. For a finite group G the minimal degree of a faithful representation of G by quasi-permutation matrices over the rationals and the complex numbers are denoted by q(G) and c(G) respectively. Finally r (G) denotes the minimal degree of a faithful rational valued complex character of C. The purpose of this paper is to calculate q(G), c(G) and r(G) for the group S L(2, q) when extended by a certain group of order two.

Approximate Solution of Nonlinear Fredholm Integral Equations of the First Kind via Converting to Optimization Problems
In this paper we introduce an approach via optimization methods to find approximate solutions for nonlinear Fredholm integral equations of the first kind. To this purpose, we consider two stages of approximation. First we convert the integral equation to a moment problem and then we modify the new problem to two classes of optimization problems, non-constraint optimization problems and optimal control problems. Finally numerical examples is proposed.
Data Annotation Models and Annotation Query Language
This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.
A Community Compromised Approach to Combinatorial Coalition Problem

Buyer coalition with a combination of items is a group of buyers joining together to purchase a combination of items with a larger discount. The primary aim of existing buyer coalition with a combination of items research is to generate a large total discount. However, the aim is hard to achieve because this research is based on the assumption that each buyer completely knows other buyers- information or at least one buyer knows other buyers- information in a coalition by exchange of information. These assumption contrast with the real world environment where buyers join a coalition with incomplete information, i.e., they concerned only with their expected discounts. Therefore, this paper proposes a new buyer community coalition formation with a combination of items scheme, called the Community Compromised Combinatorial Coalition scheme, under such an environment of incomplete information. In order to generate a larger total discount, after buyers who want to join a coalition propose their minimum required saving, a coalition structure that gives a maximum total retail prices is formed. Then, the total discount division of the coalition is divided among buyers in the coalition depending on their minimum required saving and is a Pareto optimal. In mathematical analysis, we compare concepts of this scheme with concepts of the existing buyer coalition scheme. Our mathematical analysis results show that the total discount of the coalition in this scheme is larger than that in the existing buyer coalition scheme.

The Influence of Preprocessing Parameters on Text Categorization

Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.

Global Behavior in (Q-xy)2 Potential

The general global behavior of particle S a non-linear (Q - xy)2 potential cannot be revealed a Poincare surface of section method (PSS) because inost trajectories take practically infinitely long time to integrate numerically before they come back to the surface. In this study as an alternative to PSS, a multiple scale perturbation is applied to analyze global adiabatic, non-adiabatic and chaotic behavior of particles in this potential. It was found that the results can be summarized as a form of a Fermi-like map. Additionally, this method gives a variation of global stochasticity criteria with Q.

Palmprint based Cancelable Biometric Authentication System
A cancelable palmprint authentication system proposed in this paper is specifically designed to overcome the limitations of the contemporary biometric authentication system. In this proposed system, Geometric and pseudo Zernike moments are employed as feature extractors to transform palmprint image into a lower dimensional compact feature representation. Before moment computation, wavelet transform is adopted to decompose palmprint image into lower resolution and dimensional frequency subbands. This reduces the computational load of moment calculation drastically. The generated wavelet-moment based feature representation is used to generate cancelable verification key with a set of random data. This private binary key can be canceled and replaced. Besides that, this key also possesses high data capture offset tolerance, with highly correlated bit strings for intra-class population. This property allows a clear separation of the genuine and imposter populations, as well as zero Equal Error Rate achievement, which is hardly gained in the conventional biometric based authentication system.
Recursive Algorithms for Image Segmentation Based on a Discriminant Criterion

In this study, a new criterion for determining the number of classes an image should be segmented is proposed. This criterion is based on discriminant analysis for measuring the separability among the segmented classes of pixels. Based on the new discriminant criterion, two algorithms for recursively segmenting the image into determined number of classes are proposed. The proposed methods can automatically and correctly segment objects with various illuminations into separated images for further processing. Experiments on the extraction of text strings from complex document images demonstrate the effectiveness of the proposed methods.1

A Perceptual Image Coding method of High Compression Rate
In the framework of the image compression by Wavelet Transforms, we propose a perceptual method by incorporating Human Visual System (HVS) characteristics in the quantization stage. Indeed, human eyes haven-t an equal sensitivity across the frequency bandwidth. Therefore, the clarity of the reconstructed images can be improved by weighting the quantization according to the Contrast Sensitivity Function (CSF). The visual artifact at low bit rate is minimized. To evaluate our method, we use the Peak Signal to Noise Ratio (PSNR) and a new evaluating criteria witch takes into account visual criteria. The experimental results illustrate that our technique shows improvement on image quality at the same compression ratio.
Spread Spectrum Code Estimation by Genetic Algorithm
In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.
Intelligent Modeling of the Electrical Activity of the Human Heart
The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.
Time-Delay Estimation Using Cross-ΨB-Energy Operator
In this paper, a new time-delay estimation technique based on the cross IB-energy operator [5] is introduced. This quadratic energy detector measures how much a signal is present in another one. The location of the peak of the energy operator, corresponding to the maximum of interaction between the two signals, is the estimate of the delay. The method is a fully data-driven approach. The discrete version of the continuous-time form of the cross IBenergy operator, for its implementation, is presented. The effectiveness of the proposed method is demonstrated on real underwater acoustic signals arriving from targets and the results compared to the cross-correlation method.
FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm
In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.
Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels

Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.

Modeling and Simulating of Gas Turbine Cooled Blades

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Home Network-Specific RBAC Model
As various mobile sensing technologies, remote control and ubiquitous infrastructure are developing and expectations on quality of life are increasing, a lot of researches and developments on home network technologies and services are actively on going, Until now, we have focused on how to provide users with high-level home network services, while not many researches on home network security for guaranteeing safety are progressing. So, in this paper, we propose an access control model specific to home network that provides various kinds of users with home network services up one-s characteristics and features, and protects home network systems from illegal/unnecessary accesses or intrusions.
Automatic Vehicle Identification by Plate Recognition
Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.
Definition and Implementation of a Simulation Model for the Physical Layer and the Radio Channel in Dedicated Short Range Communication Systems
This paper proposes a vehicle-to-vehicle propagation model implemented with SDL. To estimate the channel characteristics for Inter-Vehicle communication, we first define a predicted propagation pathloss between the moving vehicles under three typical scenarios. A Ray-tracing method is used for the simple gamma model performance.
Non-Parametric Histogram-Based Thresholding Methods for Weld Defect Detection in Radiography
In non destructive testing by radiography, a perfect knowledge of the weld defect shape is an essential step to appreciate the quality of the weld and make decision on its acceptability or rejection. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of thresholding methods must be done judiciously. In this paper, performance criteria are used to conduct a comparative study of four non parametric histogram thresholding methods for automatic extraction of weld defect in radiographic images.
Fast Extraction of Edge Histogram in DCT Domain based on MPEG7
In these days, multimedia data is transmitted and processed in compressed format. Due to the decoding procedure and filtering for edge detection, the feature extraction process of MPEG-7 Edge Histogram Descriptor is time-consuming as well as computationally expensive. To improve efficiency of compressed image retrieval, we propose a new edge histogram generation algorithm in DCT domain in this paper. Using the edge information provided by only two AC coefficients of DCT coefficients, we can get edge directions and strengths directly in DCT domain. The experimental results demonstrate that our system has good performance in terms of retrieval efficiency and effectiveness.
EEG Spikes Detection, Sorting, and Localization
This study introduces a new method for detecting, sorting, and localizing spikes from multiunit EEG recordings. The method combines the wavelet transform, which localizes distinctive spike features, with Super-Paramagnetic Clustering (SPC) algorithm, which allows automatic classification of the data without assumptions such as low variance or Gaussian distributions. Moreover, the method is capable of setting amplitude thresholds for spike detection. The method makes use of several real EEG data sets, and accordingly the spikes are detected, clustered and their times were detected.
Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification
A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.
Contour Estimation in Synthetic and Real Weld Defect Images based on Maximum Likelihood
This paper describes a novel method for automatic estimation of the contours of weld defect in radiography images. Generally, the contour detection is the first operation which we apply in the visual recognition system. Our approach can be described as a region based maximum likelihood formulation of parametric deformable contours. This formulation provides robustness against the poor image quality, and allows simultaneous estimation of the contour parameters together with other parameters of the model. Implementation is performed by a deterministic iterative algorithm with minimal user intervention. Results testify for the very good performance of the approach especially in synthetic weld defect images.
Improving Image Quality in Remote Sensing Satellites using Channel Coding
Among other factors that characterize satellite communication channels is their high bit error rate. We present a system for still image transmission over noisy satellite channels. The system couples image compression together with error control codes to improve the received image quality while maintaining its bandwidth requirements. The proposed system is tested using a high resolution satellite imagery simulated over the Rician fading channel. Evaluation results show improvement in overall system including image quality and bandwidth requirements compared to similar systems with different coding schemes.
2D Gabor Functions and FCMI Algorithm for Flaws Detection in Ultrasonic Images
In this paper we present a new approach to detecting a flaw in T.O.F.D (Time Of Flight Diffraction) type ultrasonic image based on texture features. Texture is one of the most important features used in recognizing patterns in an image. The paper describes texture features based on 2D Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial frequency range and multiple orientations, which represent an appropriate choice for tasks requiring simultaneous measurement in both space and frequency domains. The most relevant features are used as input data on a Fuzzy c-mean clustering classifier. The classes that exist are only two: 'defects' or 'no defects'. The proposed approach is tested on the T.O.F.D image achieved at the laboratory and on the industrial field.
LINUX Cluster Possibilities in 3-D PHOTO Quality Imaging and Animation
In this paper we present the PC cluster built at R.V. College of Engineering (with great help from the Department of Computer Science and Electrical Engineering). The structure of the cluster is described and the performance is evaluated by rendering of complex 3D Persistence of Vision (POV) images by the Ray-Tracing algorithm. Here, we propose an unexampled method to render such images, distributedly on a low cost scalable.
A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time Delay Gene Networks
A gene network gives the knowledge of the regulatory relationships among the genes. Each gene has its activators and inhibitors that regulate its expression positively and negatively respectively. Genes themselves are believed to act as activators and inhibitors of other genes. They can even activate one set of genes and inhibit another set. Identifying gene networks is one of the most crucial and challenging problems in Bioinformatics. Most work done so far either assumes that there is no time delay in gene regulation or there is a constant time delay. We here propose a Dynamic Time- Lagged Correlation Based Method (DTCBM) to learn the gene networks, which uses time-lagged correlation to find the potential gene interactions, and then uses a post-processing stage to remove false gene interactions to common parents, and finally uses dynamic correlation thresholds for each gene to construct the gene network. DTCBM finds correlation between gene expression signals shifted in time, and therefore takes into consideration the multi time delay relationships among the genes. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae gene expression data and comparison with other methods indicate that it has a better performance.
Trispectral Analysis of Voiced Sounds Defective Audition and Tracheotomisian Cases
This paper presents the cepstral and trispectral analysis of a speech signal produced by normal men, men with defective audition (deaf, deep deaf) and others affected by tracheotomy, the trispectral analysis based on parametric methods (Autoregressive AR) using the fourth order cumulant. These analyses are used to detect and compare the pitches and the formants of corresponding voiced sounds (vowel \a\, \i\ and \u\). The first results appear promising, since- it seems after several experimentsthere is no deformation of the spectrum as one could have supposed it at the beginning, however these pathologies influenced the two characteristics: The defective audition influences to the formants contrary to the tracheotomy, which influences the fundamental frequency (pitch).
2D Rigid Registration of MR Scans using the 1d Binary Projections
This paper presents the application of a signal intensity independent registration criterion for 2D rigid body registration of medical images using 1D binary projections. The criterion is defined as the weighted ratio of two projections. The ratio is computed on a pixel per pixel basis and weighting is performed by setting the ratios between one and zero pixels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the one areas of the two projections and it is minimized using the Chebyshev polynomial approximation using n=5 points. The sum of x and y projections is used for translational adjustment and a 45deg projection for rotational adjustment. 20 T1- T2 registration experiments were performed and gave mean errors 1.19deg and 1.78 pixels. The method is suitable for contour/surface matching. Further research is necessary to determine the robustness of the method with regards to threshold, shape and missing data.
Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection
Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.
A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems
In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.
Network Anomaly Detection using Soft Computing
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.
Implementing High Performance VPN Router using Cavium-s CN2560 Security Processor
IPsec protocol[1] is a set of security extensions developed by the IETF and it provides privacy and authentication services at the IP layer by using modern cryptography. In this paper, we describe both of H/W and S/W architectures of our router system, SRS-10. The system is designed to support high performance routing and IPsec VPN. Especially, we used Cavium-s CN2560 processor to implement IPsec processing in inline-mode.
Comparative Analysis of Mobility Support in Mobile IP and SIP
With the rapid usage of portable devices mobility in IP networks becomes more important issue in the recent years. IETF standardized Mobile IP that works in Network Layer, which involves tunneling of IP packets from HA to Foreign Agent. Mobile IP suffers many problems of Triangular Routing, conflict with private addressing scheme, increase in load in HA, need of permanent home IP address, tunneling itself, and so on. In this paper, we proposed mobility management in Application Layer protocol SIP and show some comparative analysis between Mobile IP and SIP in context of mobility.
Genetic-Fuzzy Inverse Controller for a Robot Arm Suitable for On Line Applications
The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Geno-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (indirect controller) has two genetic-fuzzy blocks, the first as controller, the second as identifier. The identification method is based on inverse identification technique. The proposed controller it tested in normal and load disturbance conditions.
Robot Task-Level Programming Language and Simulation
This paper presents the development of a software application for Off-line robot task programming and simulation. Such application is designed to assist in robot task planning and to direct manipulator motion on sensor based programmed motion. The concept of the designed programming application is to use the power of the knowledge base for task accumulation. In support of the programming means, an interactive graphical simulation for manipulator kinematics was also developed and integrated into the application as the complimentary factor to the robot programming media. The simulation provides the designer with useful, inexpensive, off-line tools for retain and testing robotics work cells and automated assembly lines for various industrial applications.
Cooperative Multi Agent Soccer Robot Team
This paper introduces our first efforts of developing a new team for RoboCup Middle Size Competition. In our robots we have applied omni directional based mobile system with omnidirectional vision system and fuzzy control algorithm to navigate robots. The control architecture of MRL middle-size robots is a three layered architecture, Planning, Sequencing, and Executing. It also uses Blackboard system to achieve coordination among agents. Moreover, the architecture should have minimum dependency on low level structure and have a uniform protocol to interact with real robot.
Fuzzy Error Recovery in Feedback Control for Three Wheel Omnidirectional Soccer Robot

This paper is described one of the intelligent control method in Autonomous systems, which is called fuzzy control to correct the three wheel omnidirectional robot movement while it make mistake to catch the target. Fuzzy logic is especially advantageous for problems that can not be easily represented by mathematical modeling because data is either unavailable, incomplete or the process is too complex. Such systems can be easily up grated by adding new rules to improve performance or add new features. In many cases , fuzzy control can be used to improve existing traditional controller systems by adding an extra layer of intelligence to the current control method. The fuzzy controller designed here is more accurate and flexible than the traditional controllers. The project is done at MRL middle size soccer robot team.

Visual Object Tracking and Interception in Industrial Settings
This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.
A Computational Model of Minimal Consciousness Functions

Interest in Human Consciousness has been revived in the late 20th century from different scientific disciplines. Consciousness studies involve both its understanding and its application. In this paper, a computational model of the minimum consciousness functions necessary in my point of view for Artificial Intelligence applications is presented with the aim of improving the way computations will be made in the future. In section I, human consciousness is briefly described according to the scope of this paper. In section II, a minimum set of consciousness functions is defined - based on the literature reviewed - to be modelled, and then a computational model of these functions is presented in section III. In section IV, an analysis of the model is carried out to describe its functioning in detail.

Extended Deductive Databases with Uncertain Information
The paper presents an approach for handling uncertain information in deductive databases using multivalued logics. Uncertainty means that database facts may be assigned logical values other than the conventional ones - true and false. The logical values represent various degrees of truth, which may be combined and propagated by applying the database rules. A corresponding multivalued database semantics is defined. We show that it extends successful conventional semantics as the well-founded semantics, and has a polynomial time data complexity.
A Logic Approach to Database Dynamic Updating
We introduce a logic-based framework for database updating under constraints. In our framework, the constraints are represented as an instantiated extended logic program. When performing an update, database consistency may be violated. We provide an approach of maintaining database consistency, and study the conditions under which the maintenance process is deterministic. We show that the complexity of the computations and decision problems presented in our framework is in each case polynomial time.
Extended Well-Founded Semantics in Bilattices
One of the most used assumptions in logic programming and deductive databases is the so-called Closed World Assumption (CWA), according to which the atoms that cannot be inferred from the programs are considered to be false (i.e. a pessimistic assumption). One of the most successful semantics of conventional logic programs based on the CWA is the well-founded semantics. However, the CWA is not applicable in all circumstances when information is handled. That is, the well-founded semantics, if conventionally defined, would behave inadequately in different cases. The solution we adopt in this paper is to extend the well-founded semantics in order for it to be based also on other assumptions. The basis of (default) negative information in the well-founded semantics is given by the so-called unfounded sets. We extend this concept by considering optimistic, pessimistic, skeptical and paraconsistent assumptions, used to complete missing information from a program. Our semantics, called extended well-founded semantics, expresses also imperfect information considered to be missing/incomplete, uncertain and/or inconsistent, by using bilattices as multivalued logics. We provide a method of computing the extended well-founded semantics and show that Kripke-Kleene semantics is captured by considering a skeptical assumption. We show also that the complexity of the computation of our semantics is polynomial time.
Exchanges of Knowledge about Product Configurations using XML Topic Map

Modeling product configurations needs large amounts of knowledge about technical and marketing restrictions on the product. Previous attempts to automate product configurations concentrate on representations and management of the knowledge for specific domains in fixed and isolated computing environments. Since the knowledge about product configurations is subject to continuous change and hard to express, these attempts often failed to efficiently manage and exchange the knowledge in collaborative product development. In this paper, XML Topic Map (XTM) is introduced to represent and exchange the knowledge about product configurations in collaborative product development. A product configuration model based on XTM along with its merger and inference facilities enables configuration engineers in collaborative product development to manage and exchange their knowledge efficiently. A prototype implementation is also presented to demonstrate the proposed model can be applied to engineering information systems to exchange the product configuration knowledge.

A Computer Aided Model for Supporting Design Education
Educating effective architect designers is an important goal of architectural education. But what contributes to students- performance, and to critical and creative thinking in architectural design education? Besides teaching architecture students how to understand logical arguments, eliminate the inadequate solutions and focus on the correct ones, it is also crucial to teach students how to focus on exploring ideas and the alternative solutions and seeking for other right answers rather than one. This paper focuses on the enhancing architectural design education and may provide implications for enhancing teaching design.
The Performance of the Character-Access on the Checking Phase in String Searching Algorithms
A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed; the results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Circle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of comparisons are improved up to 74.0%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 28% to 68% by the new CCCA algorithm
Core Issues Affecting Software Architecture in Enterprise Projects
In this paper we analyze the core issues affecting software architecture in enterprise projects where a large number of people at different backgrounds are involved and complex business, management and technical problems exist. We first give general features of typical enterprise projects and then present foundations of software architectures. The detailed analysis of core issues affecting software architecture in software development phases is given. We focus on three main areas in each development phase: people, process, and management related issues, structural (product) issues, and technology related issues. After we point out core issues and problems in these main areas, we give recommendations for designing good architecture. We observed these core issues and the importance of following the best software development practices and also developed some novel practices in many big enterprise commercial and military projects in about 10 years of experience.
University of Jordan Case Tool (Uj-Case- Tool) for Database Reverse Engineering
The database reverse engineering problems and solving processes are getting mature, even though, the academic community is facing the complex problem of knowledge transfer, both in university and industrial contexts. This paper presents a new CASE tool developed at the University of Jordan which addresses an efficient support of this transfer, namely UJ-CASE-TOOL. It is a small and self-contained application exhibiting representative problems and appropriate solutions that can be understood in a limited time. It presents an algorithm that describes the developed academic CASE tool which has been used for several years both as an illustration of the principles of database reverse engineering and as an exercise aimed at academic and industrial students.
The Challenge of Large-Scale IT Projects
The trend in the world of Information Technology (IT) is getting increasingly large and difficult projects rather than smaller and easier. However, the data on large-scale IT project success rates provide cause for concern. This paper seeks to answer why large-scale IT projects are different from and more difficult than other typical engineering projects. Drawing on the industrial experience, a compilation of the conditions that influence failure is presented. With a view to improve success rates solutions are suggested.
A Modified Maximum Urgency First Scheduling Algorithm for Real-Time Tasks
This paper presents a modified version of the maximum urgency first scheduling algorithm. The maximum urgency algorithm combines the advantages of fixed and dynamic scheduling to provide the dynamically changing systems with flexible scheduling. This algorithm, however, has a major shortcoming due to its scheduling mechanism which may cause a critical task to fail. The modified maximum urgency first scheduling algorithm resolves the mentioned problem. In this paper, we propose two possible implementations for this algorithm by using either earliest deadline first or modified least laxity first algorithms for calculating the dynamic priorities. These two approaches are compared together by simulating the two algorithms. The earliest deadline first algorithm as the preferred implementation is then recommended. Afterwards, we make a comparison between our proposed algorithm and maximum urgency first algorithm using simulation and results are presented. It is shown that modified maximum urgency first is superior to maximum urgency first, since it usually has less task preemption and hence, less related overhead. It also leads to less failed non-critical tasks in overloaded situations.
Development of a Wiki-based Feature Library for a Process Planning System
A manufacturing feature can be defined simply as a geometric shape and its manufacturing information to create the shape. In a feature-based process planning system, feature library plays an important role in the extraction of manufacturing features with their proper manufacturing information. However, to manage the manufacturing information flexibly, it is important to build a feature library that is easy to modify. In this paper, a Wiki-based feature library is proposed.
Development of a Software about Calculating the Production Parameters in Knitted Garment Plants

Apparel product development is an important stage in the life cycle of a product. Shortening this stage will help to reduce the costs of a garment. The aim of this study is to examine the production parameters in knitwear apparel companies by defining the unit costs, and developing a software to calculate the unit costs of garments and make the cost estimates. In this study, with the help of a questionnaire, different companies- systems of unit cost estimating and cost calculating were tried to be analyzed. Within the scope of the questionnaire, the importance of cost estimating process for apparel companies and the expectations from a new cost estimating program were investigated. According to the results of the questionnaire, it was seen that the majority of companies which participated to the questionnaire use manual cost calculating methods or simple Microsoft Excel spreadsheets to make cost estimates. Furthermore, it was discovered that many companies meet with difficulties in archiving the cost data for future use and as a solution to that problem, it is thought that prior to making a cost estimate, sub units of garment costs which are fabric, accessory and the labor costs should be analyzed and added to the database of the programme beforehand. Another specification of the cost estimating unit prepared in this study is that the programme was designed to consist of two main units, one of which makes the product specification and the other makes the cost calculation. The programme is prepared as a web-based application in order that the supplier, the manufacturer and the customer can have the opportunity to communicate through the same platform.

Iterative Way to Acquire Information Technology for Defense and Aerospace
Defense and Aerospace environment is continuously striving to keep up with increasingly sophisticated Information Technology (IT) in order to remain effective in today-s dynamic and unpredictable threat environment. This makes IT one of the largest and fastest growing expenses of Defense. Hundreds of millions of dollars spent a year on IT projects. But, too many of those millions are wasted on costly mistakes. Systems that do not work properly, new components that are not compatible with old ones, trendy new applications that do not really satisfy defense needs or lost through poorly managed contracts. This paper investigates and compiles the effective strategies that aim to end exasperation with low returns and high cost of Information Technology acquisition for defense; it tries to show how to maximize value while reducing time and expenditure.
Mathematical Model for the Transmission of P. Falciparum and P. Vivax Malaria along the Thai-Myanmar Border

The most Malaria cases are occur along Thai-Mynmar border. Mathematical model for the transmission of Plasmodium falciparum and Plasmodium vivax malaria in a mixed population of Thais and migrant Burmese living along the Thai-Myanmar Border is studied. The population is separated into two groups, Thai and Burmese. Each population is divided into susceptible, infected, dormant and recovered subclasses. The loss of immunity by individuals in the infected class causes them to move back into the susceptible class. The person who is infected with Plasmodium vivax and is a member of the dormant class can relapse back into the infected class. A standard dynamical method is used to analyze the behaviors of the model. Two stable equilibrium states, a disease-free state and an epidemic state, are found to be possible in each population. A disease-free equilibrium state in the Thai population occurs when there are no infected Burmese entering the community. When infected Burmese enter the Thai community, an epidemic state can occur. It is found that the disease-free state is stable when the threshold number is less than one. The epidemic state is stable when a second threshold number is greater than one. Numerical simulations are used to confirm the results of our model.

Design of Moving Sliding Surfaces in A Variable Structure Plant and Chattering Phenomena
This paper deals with the design of a moving sliding surface in a variable structure plant for a second order system. The chattering phenomena is also dealt with during the switching process for an unstable sliding surface condition. The simulation examples considered in this paper shows the effectiveness of the sliding mode control method used for the design of the moving sliding surfaces. A simulink model of the continuous system was also developed in MATLAB-SIMULINK for the design and hence demonstrated. The phase portraits and the state plots shows the demonstration of the powerful control technique which can be applied for second order systems.
The Effects of Speed on the Performance of Routing Protocols in Mobile Ad-hoc Networks
Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. Consequently, many routing algorithms have come into existence to satisfy the needs of communications in such networks. Researchers have conducted many simulations comparing the performance of these routing protocols under various conditions and constraints. One question that arises is whether speed of nodes affects the relative performance of routing protocols being studied. This paper addresses the question by simulating two routing protocols AODV and DSDV. Protocols were simulated using the ns-2 and were compared in terms of packet delivery fraction, normalized routing load and average delay, while varying number of nodes, and speed.
The Performance of Genetic Algorithm for Synchronized Chaotic Chen System in CDMA Satellite Channel
Synchronization is a difficult problem in CDMA satellite communications. Due to the influence of additive noise and fading in the mobile channel, it is not easy to keep up with the attenuation and offset. This paper considers a recently proposed approach to solve the problem of synchronization chaotic Chen system in CDMA satellite communication in the presence of constant attenuation and offset. An analytic algorithm that provides closed form channel and carrier offset estimates is presented. The principle of this approach is based on adding a compensation block before the receiver to compensate the distortion of the imperfect channel by using genetic algorithm. The resultants presented, show that the receiver is able to recover rapidly the synchronization with the transmitter.
Optimization of Transmitter Aperture by Genetic Algorithm in Optical Satellite
To establish optical communication between any two satellites, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is the use of very small transmitter beam divergence angles of too narrow divergence angle is that the transmitter beam may sometimes miss the receiver satellite, due to pointing vibrations. In this paper we propose the use of genetic algorithm to optimize the BER as function of transmitter optics aperture.
High Order Cascade Multibit ΣΔ Modulator for Wide Bandwidth Applications
A wideband 2-1-1 cascaded ΣΔ modulator with a single-bit quantizer in the two first stages and a 4-bit quantizer in the final stage is developed. To reduce sensitivity of digital-to-analog converter (DAC) nonlinearities in the feedback of the last stage, dynamic element matching (DEM) is introduced. This paper presents two modelling approaches: The first is MATLAB description and the second is VHDL-AMS modelling of the proposed architecture and exposes some high-level-simulation results allowing a behavioural study. The detail of both ideal and non-ideal behaviour modelling are presented. Then, the study of the effect of building blocks nonidealities is presented; especially the influences of nonlinearity, finite operational amplifier gain, amplifier slew rate limitation and capacitor mismatch. A VHDL-AMS description presents a good solution to predict system-s performances and can provide sensitivity curves giving the impact of nonidealities on the system performance.
Design Optimization Methodology of CMOS Active Mixers for Multi-Standard Receivers
A design flow of multi-standard down-conversion CMOS mixers for three modern standards: Global System Mobile, Digital Enhanced Cordless Telephone and Universal Mobile Telecommunication Systems is presented. Three active mixer-s structures are studied. The first is based on the Gilbert cell which gives a tolerable noise figure and linearity with a low conversion gain. The second and third structures use the current bleeding and charge injection techniques in order to increase the conversion gain. An improvement of about 2 dB of the conversion gain is achieved without a considerable degradation of the other characteristics. The models used for noise figure, conversion gain and IIP3 used are studied. This study describes the nature of trade-offs inherent in such structures and gives insights that help in identifying which structure is better for given conditions.
Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints
The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.
Neural Network Tuned Fuzzy Controller for MIMO System
In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.
Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain
Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.
Power-Efficient AND-EXOR-INV Based Realization of Achilles' heel Logic Functions

This paper deals with a power-conscious ANDEXOR- Inverter type logic implementation for a complex class of Boolean functions, namely Achilles- heel functions. Different variants of the above function class have been considered viz. positive, negative and pure horn for analysis and simulation purposes. The proposed realization is compared with the decomposed implementation corresponding to an existing standard AND-EXOR logic minimizer; both result in Boolean networks with good testability attribute. It could be noted that an AND-OR-EXOR type logic network does not exist for the positive phase of this unique class of logic function. Experimental results report significant savings in all the power consumption components for designs based on standard cells pertaining to a 130nm UMC CMOS process The simulations have been extended to validate the savings across all three library corners (typical, best and worst case specifications).

Class Outliers Mining: Distance-Based Approach
In large datasets, identifying exceptional or rare cases with respect to a group of similar cases is considered very significant problem. The traditional problem (Outlier Mining) is to find exception or rare cases in a dataset irrespective of the class label of these cases, they are considered rare events with respect to the whole dataset. In this research, we pose the problem that is Class Outliers Mining and a method to find out those outliers. The general definition of this problem is “given a set of observations with class labels, find those that arouse suspicions, taking into account the class labels". We introduce a novel definition of Outlier that is Class Outlier, and propose the Class Outlier Factor (COF) which measures the degree of being a Class Outlier for a data object. Our work includes a proposal of a new algorithm towards mining of the Class Outliers, presenting experimental results applied on various domains of real world datasets and finally a comparison study with other related methods is performed.
Fuzzy Join Dependency in Fuzzy Relational Databases
The join dependency provides the basis for obtaining lossless join decomposition in a classical relational schema. The existence of Join dependency shows that that the tables always represent the correct data after being joined. Since the classical relational databases cannot handle imprecise data, they were extended to fuzzy relational databases so that uncertain, ambiguous, imprecise and partially known information can also be stored in databases in a formal way. However like classical databases, the fuzzy relational databases also undergoes decomposition during normalization, the issue of joining the decomposed fuzzy relations remains intact. Our effort in the present paper is to emphasize on this issue. In this paper we define fuzzy join dependency in the framework of type-1 fuzzy relational databases & type-2 fuzzy relational databases using the concept of fuzzy equality which is defined using fuzzy functions. We use the fuzzy equi-join operator for computing the fuzzy equality of two attribute values. We also discuss the dependency preservation property on execution of this fuzzy equi- join and derive the necessary condition for the fuzzy functional dependencies to be preserved on joining the decomposed fuzzy relations. We also derive the conditions for fuzzy join dependency to exist in context of both type-1 and type-2 fuzzy relational databases. We find that unlike the classical relational databases even the existence of a trivial join dependency does not ensure lossless join decomposition in type-2 fuzzy relational databases. Finally we derive the conditions for the fuzzy equality to be non zero and the qualification of an attribute for fuzzy key.
A PSO-based SSSC Controller for Improvement of Transient Stability Performance

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

Anticipating Action Decisions of Automated Guided Vehicle in an Autonomous Decentralized Flexible Manufacturing System

Nowadays the market for industrial companies is becoming more and more globalized and highly competitive, forcing them to shorten the duration of the manufacturing system development time in order to reduce the time to market. In order to achieve this target, the hierarchical systems used in previous manufacturing systems are not enough because they cannot deal effectively with unexpected situations. To achieve flexibility in manufacturing systems, the concept of an Autonomous Decentralized Flexible Manufacturing System (AD-FMS) is useful. In this paper, we introduce a hypothetical reasoning based algorithm called the Algorithm for Future Anticipative Reasoning (AFAR) which is able to decide on a conceivable next action of an Automated Guided Vehicle (AGV) that works autonomously in the AD-FMS.

A Cascaded Fuzzy Inference System for Dynamic Online Portals Customization

In our modern world, more physical transactions are being substituted by electronic transactions (i.e. banking, shopping, and payments), many businesses and companies are performing most of their operations through the internet. Instead of having a physical commerce, internet visitors are now adapting to electronic commerce (e-Commerce). The ability of web users to reach products worldwide can be greatly benefited by creating friendly and personalized online business portals. Internet visitors will return to a particular website when they can find the information they need or want easily. Dealing with this human conceptualization brings the incorporation of Artificial/Computational Intelligence techniques in the creation of customized portals. From these techniques, Fuzzy-Set technologies can make many useful contributions to the development of such a human-centered endeavor as e-Commerce. The main objective of this paper is the implementation of a Paradigm for the Intelligent Design and Operation of Human-Computer interfaces. In particular, the paradigm is quite appropriate for the intelligent design and operation of software modules that display information (such Web Pages, graphic user interfaces GUIs, Multimedia modules) on a computer screen. The human conceptualization of the user personal information is analyzed throughout a Cascaded Fuzzy Inference (decision-making) System to generate the User Ascribe Qualities, which identify the user and that can be used to customize portals with proper Web links.

Information System for Data Selection and New Information Acquisition for Reconfigurable Multifunctional Machine Tools

The purpose of the paper is to develop an informationcontrol environment for overall management and self-reconfiguration of the reconfigurable multifunctional machine tool for machining both rotation and prismatic parts and high concentration of different technological operations - turning, milling, drilling, grinding, etc. For the realization of this purpose on the basis of defined sub-processes for the implementation of the technological process, architecture of the information-search system for machine control is suggested. By using the object-oriented method, a structure and organization of the search system based on agents and manager with central control are developed. Thus conditions for identification of available information in DBs, self-reconfiguration of technological system and entire control of the reconfigurable multifunctional machine tool are created.

Specifying Strict Serializability of Iterated Transactions in Propositional Temporal Logic

We present an operator for a propositional linear temporal logic over infinite schedules of iterated transactions, which, when applied to a formula, asserts that any schedule satisfying the formula is serializable. The resulting logic is suitable for specifying and verifying consistency properties of concurrent transaction management systems, that can be defined in terms of serializability, as well as other general safety and liveness properties. A strict form of serializability is used requiring that, whenever the read and write steps of a transaction occurrence precede the read and write steps of another transaction occurrence in a schedule, the first transaction must precede the second transaction in an equivalent serial schedule. This work improves on previous work in providing a propositional temporal logic with a serializability operator that is of the same PSPACE complete computational complexity as standard propositional linear temporal logic without a serializability operator.

Learning FCM by Tabu Search

Fuzzy Cognitive Maps (FCMs) is a causal graph, which shows the relations between essential components in complex systems. Experts who are familiar with the system components and their relations can generate a related FCM. There is a big gap when human experts cannot produce FCM or even there is no expert to produce the related FCM. Therefore, a new mechanism must be used to bridge this gap. In this paper, a novel learning method is proposed to construct causal graph based on historical data and by using metaheuristic such Tabu Search (TS). The efficiency of the proposed method is shown via comparison of its results of some numerical examples with those of some other methods.

A Content Based Image Watermarking Scheme Resilient to Geometric Attacks

Multimedia security is an incredibly significant area of concern. The paper aims to discuss a robust image watermarking scheme, which can withstand geometric attacks. The source image is initially moment normalized in order to make it withstand geometric attacks. The moment normalized image is wavelet transformed. The first level wavelet transformed image is segmented into blocks if size 8x8. The product of mean and standard and standard deviation of each block is computed. The second level wavelet transformed image is divided into 8x8 blocks. The product of block mean and the standard deviation are computed. The difference between products in the two levels forms the watermark. The watermark is inserted by modulating the coefficients of the mid frequencies. The modulated image is inverse wavelet transformed and inverse moment normalized to generate the watermarked image. The watermarked image is now ready for transmission. The proposed scheme can be used to validate identification cards and financial instruments. The performance of this scheme has been evaluated using a set of parameters. Experimental results show the effectiveness of this scheme.

Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization

We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.

Extraction of Significant Phrases from Text

Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.

Formal Analysis of a Public-Key Algorithm

In this article, a formal specification and verification of the Rabin public-key scheme in a formal proof system is presented. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. A major objective of this article is the presentation of the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Moreover, we explicate a (computer-proven) formalization of correctness as well as a computer verification of security properties using a straight-forward computation model in Isabelle/HOL. The analysis uses a given database to prove formal properties of our implemented functions with computer support. The main task in designing a practical formalization of correctness as well as efficient computer proofs of security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as efficient formal proofs. Consequently, we get reliable proofs with a minimal error rate augmenting the used database, what provides a formal basis for more computer proof constructions in this area.

A Technique for Improving the Performance of Median Smoothers at the Corners Characterized by Low Order Polynomials

Median filters with larger windows offer greater smoothing and are more robust than the median filters of smaller windows. However, the larger median smoothers (the median filters with the larger windows) fail to track low order polynomial trends in the signals. Due to this, constant regions are produced at the signal corners, leading to the loss of fine details. In this paper, an algorithm, which combines the ability of the 3-point median smoother in preserving the low order polynomial trends and the superior noise filtering characteristics of the larger median smoother, is introduced. The proposed algorithm (called the combiner algorithm in this paper) is evaluated for its performance on a test image corrupted with different types of noise and the results obtained are included.

Water Security in Rural Areas through Solar Energy in Baja California Sur, Mexico

This study aims to assess the potential of solar energy technology for improving access to water and hence the livelihood strategies of rural communities in Baja California Sur, Mexico. It focuses on livestock ranches and photovoltaic water-pumptechnology as well as other water extraction methods. The methodology used are the Sustainable Livelihoods and the Appropriate Technology approaches. A household survey was applied in June of 2006 to 32 ranches in the municipality, of which 22 used PV pumps; and semi-structured interviews were conducted. Findings indicate that solar pumps have in fact helped people improve their quality of life by allowing them to pursue a different livelihood strategy and that improved access to water -not necessarily as more water but as less effort to extract and collect it- does not automatically imply overexploitation of the resource; consumption is based on basic needs as well as on storage and pumping capacity. Justification for such systems lies in the avoidance of logistical problems associated to fossil fuels, PV pumps proved to be the most beneficial when substituting gasoline or diesel equipment but of dubious advantage if intended to replace wind or gravity systems. Solar water pumping technology-s main obstacle to dissemination are high investment and repairs costs and it is therefore not suitable for all cases even when insolation rates and water availability are adequate. In cases where affordability is not an obstacle it has become an important asset that contributes –by means of reduced expenses, less effort and saved time- to the improvement of livestock, the main livelihood provider for these ranches.

Economic Development, Environmental Conflicts and Citizen Participation in Latin America

Environmental conflicts produced by economic development and natural resources exploitation, are discussed. Main causes of conflicts in developing countries were shown to arise from geographically external investments, inefficiency of the Environmental Impact Assessment (EIA), and the lack of communication between government and Non-Government Organizations (NGOs). Citizen participation can only intervene during late stages of the EIA, which is considered as one of the main shortcomings in satisfying demands of local people.

A Method for 3D Mesh Adaptation in FEA

The use of the mechanical simulation (in particular the finite element analysis) requires the management of assumptions in order to analyse a real complex system. In finite element analysis (FEA), two modeling steps require assumptions to be able to carry out the computations and to obtain some results: the building of the physical model and the building of the simulation model. The simplification assumptions made on the analysed system in these two steps can generate two kinds of errors: the physical modeling errors (mathematical model, domain simplifications, materials properties, boundary conditions and loads) and the mesh discretization errors. This paper proposes a mesh adaptive method based on the use of an h-adaptive scheme in combination with an error estimator in order to choose the mesh of the simulation model. This method allows us to choose the mesh of the simulation model in order to control the cost and the quality of the finite element analysis.

Optimizing Mobile Agents Migration Based on Decision Tree Learning

Mobile agents are a powerful approach to develop distributed systems since they migrate to hosts on which they have the resources to execute individual tasks. In a dynamic environment like a peer-to-peer network, Agents have to be generated frequently and dispatched to the network. Thus they will certainly consume a certain amount of bandwidth of each link in the network if there are too many agents migration through one or several links at the same time, they will introduce too much transferring overhead to the links eventually, these links will be busy and indirectly block the network traffic, therefore, there is a need of developing routing algorithms that consider about traffic load. In this paper we seek to create cooperation between a probabilistic manner according to the quality measure of the network traffic situation and the agent's migration decision making to the next hop based on decision tree learning algorithms.

A Novel Approach to EMABS and Comparison with ABS

In this paper two different Antilock braking system (ABS) are simulated and compared. One is the ordinary hydraulic ABS system which we call it ABS and the other is Electromagnetic Antilock braking system which is called (EMABS) the basis of performance of an EMABS is based upon Electromagnetic force. In this system there is no need to use servo hydraulic booster which are used in ABS system. In EMABS to generate the desired force we have use a magnetic relay which works with an input voltage through an air gap (g). The generated force will be amplified by the relay arm, and is applied to the brake shoes and thus the braking torque is generated. The braking torque is proportional to the applied electrical voltage E. to adjust the braking torque it is only necessary to regulate the electrical voltage E which is very faster and has a much smaller time constant T than the ABS system. The simulations of these two different ABS systems are done with MATLAB/SIMULINK software and the superiority of the EMABS has been shown.

Study on Diversified Developments Improving Environmental Values-In Case of University Campus -

This study aims to clarify constructions which enable to improve socio-cultural values of environments and also to obtain new knowledge on selecting development plans. CVM is adopted as a method of evaluation. As a case of the research, university campus (CP; the following) is selected on account of its various environments, institutions and many users. Investigations were conducted from 4 points of view, total value and utility value of whole CP environments, values of each environment existing in CP or development plan assumed in CP. Furthermore, respondents- attributes were also investigated. In consequence, the following is obtained. 1) Almost all of total value of CP is composed of utility value of direct use. 2) Each of environment and development plans whose value is the highest is clarified. 3) Moreover, development plan to improve environmental value the most is specified.

Estimation Method for the Construction of Hydrogen Society with Various Biomass Resources in Japan-Project of Cost Reductions in Biomass Transport and Feasibility for Hydrogen Station with Biomass-

It was determined that woody biomass and livestock excreta can be utilized as hydrogen resources and hydrogen produced from such sources can be used to fill fuel cell vehicles (FCVs) at hydrogen stations. It was shown that the biomass transport costs for hydrogen production may be reduced the costs for co-generation. In the Tokyo Metropolitan Area, there are only a few sites capable of producing hydrogen from woody biomass in amounts greater than 200 m3/h-the scale required for a hydrogen station to be operationally practical. However, in the case of livestock excreta, it was shown that 15% of the municipalities in this area are capable of securing sufficient biomass to be operationally practical for hydrogen production. The differences in feasibility of practical operation depend on the type of biomass.

Investigation of Chaotic Behavior in DC-DC Converters

DC-DC converters are widely used in regulated switched mode power supplies and in DC motor drive applications. There are several sources of unwanted nonlinearity in practical power converters. In addition, their operation is characterized by switching that gives birth to a variety of nonlinear dynamics. DC-DC buck and boost converters controlled by pulse-width modulation (PWM) have been simulated. The voltage waveforms and attractors obtained from the circuit simulation have been studied. With the onset of instability, the phenomenon of subharmonic oscillations, quasi-periodicity, bifurcations, and chaos have been observed. This paper is mainly motivated by potential contributions of chaos theory in the design, analysis and control of power converters, in particular and power electronics circuits, in general.

Robust H∞ Filter Design for Uncertain Fuzzy Descriptor Systems: LMI-Based Design

This paper examines the problem of designing a robust H∞ filter for a class of uncertain fuzzy descriptor systems described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the uncertain nonlinear descriptor systems to have an H∞ performance are derived. To alleviate the ill-conditioning resulting from the interaction of slow and fast dynamic modes, solutions to the problem are given in terms of linear matrix inequalities which are independent of the singular perturbation ε, when ε is sufficiently small. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard uncertain nonlinear descriptor systems. A numerical example is provided to illustrate the design developed in this paper.

Evaluation of Torsional Efforts on Thermal Machines Shaft with Gas Turbine resulting of Automatic Reclosing

This paper analyses the torsional efforts in gas turbine-generator shafts caused by high speed automatic reclosing of transmission lines. This issue is especially important for cases of three phase short circuit and unsuccessful reclosure of lines in the vicinity of the thermal plant. The analysis was carried out for the thermal plant TERMOPERNAMBUCO located on Northeast region of Brazil. It is shown that stress level caused by lines unsuccessful reclosing can be several times higher than terminal three-phase short circuit. Simulations were carried out with detailed shaft torsional model provided by machine manufacturer and with the “Alternative Transient Program – ATP" program [1]. Unsuccessful three phase reclosing for selected lines in the area closed to the plant indicated most critical cases. Also, reclosing first the terminal next to the gas turbine gererator will lead also to the most critical condition. Considering that the values of transient torques are very sensible to the instant of reclosing, simulation of unsuccessful reclosing with statistics ATP switch were carried out for determination of most critical transient torques for each section of the generator turbine shaft.

Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet

In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.

Application of Computational Intelligence for Sensor Fault Detection and Isolation

The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.

Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm

This paper presents a hybrid algorithm for solving a timetabling problem, which is commonly encountered in many universities. The problem combines both teacher assignment and course scheduling problems simultaneously, and is presented as a mathematical programming model. However, this problem becomes intractable and it is unlikely that a proven optimal solution can be obtained by an integer programming approach, especially for large problem instances. A hybrid algorithm that combines an integer programming approach, a greedy heuristic and a modified simulated annealing algorithm collaboratively is proposed to solve the problem. Several randomly generated data sets of sizes comparable to that of an institution in Indonesia are solved using the proposed algorithm. Computational results indicate that the algorithm can overcome difficulties of large problem sizes encountered in previous related works.

Simulation and 40 Years of Object-Oriented Programming

2007 is a jubilee year: in 1967, programming language SIMULA 67 was presented, which contained all aspects of what was later called object-oriented programming. The present paper contains a description of the development unto the objectoriented programming, the role of simulation in this development and other tools that appeared in SIMULA 67 and that are nowadays called super-object-oriented programming.

A Fuzzy Approach for Delay Proportion Differentiated Service

There are two paradigms proposed to provide QoS for Internet applications: Integrated service (IntServ) and Differentiated service (DiffServ).Intserv is not appropriate for large network like Internet. Because is very complex. Therefore, to reduce the complexity of QoS management, DiffServ was introduced to provide QoS within a domain using aggregation of flow and per- class service. In theses networks QoS between classes is constant and it allows low priority traffic to be effected from high priority traffic, which is not suitable. In this paper, we proposed a fuzzy controller, which reduced the effect of low priority class on higher priority ones. Our simulations shows that, our approach reduces the latency dependency of low priority class on higher priority ones, in an effective manner.

Virtual Mechanical Engineering Education – A Case Study

Virtual engineering technology has undergone rapid progress in recent years and is being adopted increasingly by manufacturing companies of many engineering disciplines. There is an increasing demand from industry for qualified virtual engineers. The qualified virtual engineers should have the ability of applying engineering principles and mechanical design methods within the commercial software package environment. It is a challenge to the engineering education in universities which traditionally tends to lack the integration of knowledge and skills required for solving real world problems. In this paper, a case study shows some recent development of a MSc Mechanical Engineering course at Department of Engineering and Technology in MMU, and in particular, two units Simulation of Mechanical Systems(SMS) and Computer Aided Fatigue Analysis(CAFA) that emphasize virtual engineering education and promote integration of knowledge acquisition, skill training and industrial application.

On the Early Development of Dispersion in Flow through a Tube with Wall Reactions

This is a study on numerical simulation of the convection-diffusion transport of a chemical species in steady flow through a small-diameter tube, which is lined with a very thin layer made up of retentive and absorptive materials. The species may be subject to a first-order kinetic reversible phase exchange with the wall material and irreversible absorption into the tube wall. Owing to the velocity shear across the tube section, the chemical species may spread out axially along the tube at a rate much larger than that given by the molecular diffusion; this process is known as dispersion. While the long-time dispersion behavior, well described by the Taylor model, has been extensively studied in the literature, the early development of the dispersion process is by contrast much less investigated. By early development, that means a span of time, after the release of the chemical into the flow, that is shorter than or comparable to the diffusion time scale across the tube section. To understand the early development of the dispersion, the governing equations along with the reactive boundary conditions are solved numerically using the Flux Corrected Transport Algorithm (FCTA). The computation has enabled us to investigate the combined effects on the early development of the dispersion coefficient due to the reversible and irreversible wall reactions. One of the results is shown that the dispersion coefficient may approach its steady-state limit in a short time under the following conditions: (i) a high value of Damkohler number (say Da ≥ 10); (ii) a small but non-zero value of absorption rate (say Γ* ≤ 0.5).

The Differential Transform Method for Advection-Diffusion Problems

In this paper a class of numerical methods to solve linear and nonlinear PDEs and also systems of PDEs is developed. The Differential Transform method associated with the Method of Lines (MoL) is used. The theory for linear problems is extended to the nonlinear case, and a recurrence relation is established. This method can achieve an arbitrary high-order accuracy in time. A variable stepsize algorithm and some numerical results are also presented.

Mobility Analysis of the Population of Rabat-Salé-Zemmour-Zaer

In this paper, we present the 2006 survey study origin destination and price that we carried out during 2006 fall in the area in the Moroccan region of Rabat-Salé-Zemmour-Zaer. The survey concerns the people-s characteristics, their displacements behavior and the price that they will be able to pay for a tramway ticket. The main objective is to study a set of relative features to the households and to their displacement's habits and to their choices among public and privet transport modes. A comparison between this survey results and that of the 1996's is made. A pricing scheme is also given according to the tram capacity. (The Rabat-Salé tramway is under construction right now and it will be operational beginning 2010).

A Supervised Text-Independent Speaker Recognition Approach

We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.

Theoretical Study on a Thermal Model for Large Power Transformer Units

The paper analyzes the large power transformer unit regimes, indicating the criteria for the management of the voltage operating conditions, as well as the change in the operating conditions with the load connected to the secondary winding of the transformer unit. Further, the paper presents the software application for the evaluation of the transformer unit operation under different conditions. The software application was developed by means of virtual instrumentation.

Collaborative Design System based on Object- Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry
The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.
Entropy Generation Analysis of Free Convection Film Condensation on a Vertical Ellipsoid with Variable Wall Temperature
This paper aims to perform the second law analysis of thermodynamics on the laminar film condensation of pure saturated vapor flowing in the direction of gravity on an ellipsoid with variable wall temperature. The analysis provides us understanding how the geometric parameter- ellipticity and non-isothermal wall temperature variation amplitude “A." affect entropy generation during film-wise condensation heat transfer process. To understand of which irreversibility involved in this condensation process, we derived an expression for the entropy generation number in terms of ellipticity and A. The result indicates that entropy generation increases with ellipticity. Furthermore, the irreversibility due to finite temperature difference heat transfer dominates over that due to condensate film flow friction and the local entropy generation rate decreases with increasing A in the upper half of ellipsoid. Meanwhile, the local entropy generation rate enhances with A around the rear lower half of ellipsoid.
Phase Behavior of CO2 and CH4 Hydrate in Porous Media
Hydrate phase equilibria for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal diameters 6, 30, and 100 nm were measured and compared with the calculated results based on van der Waals and Platteeuw model. At a specific temperature, three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data. The structural characteristics of gas hydrates in silica gel pores were investigated through NMR spectroscopy.
Investment Prediction Using Simulation
A business case is a proposal for an investment initiative to satisfy business and functional requirements. The business case provides the foundation for tactical decision making and technology risk management. It helps to clarify how the organization will use its resources in the best way by providing justification for investment of resources. This paper describes how simulation was used for business case benefits and return on investment for the procurement of 8 production machines. With investment costs of about 4.7 million dollars and annual operating costs of about 1.3 million, we needed to determine if the machines would provide enough cost savings and cost avoidance. We constructed a model of the existing factory environment consisting of 8 machines and subsequently, we conducted average day simulations with light and heavy volumes to facilitate planning decisions required to be documented and substantiated in the business case.
Harmonic Parameters with HHT and Wavelet Transform for Automatic Sleep Stages Scoring
Previously, harmonic parameters (HPs) have been selected as features extracted from EEG signals for automatic sleep scoring. However, in previous studies, only one HP parameter was used, which were directly extracted from the whole epoch of EEG signal. In this study, two different transformations were applied to extract HPs from EEG signals: Hilbert-Huang transform (HHT) and wavelet transform (WT). EEG signals are decomposed by the two transformations; and features were extracted from different components. Twelve parameters (four sets of HPs) were extracted. Some of the parameters are highly diverse among different stages. Afterward, HPs from two transformations were used to building a rough sleep stages scoring model using the classifier SVM. The performance of this model is about 78% using the features obtained by our proposed extractions. Our results suggest that these features may be useful for automatic sleep stages scoring.
Use XML Format like a Model of Data Backup

Nowadays data backup format doesn-t cease to appear raising so the anxiety on their accessibility and their perpetuity. XML is one of the most promising formats to guarantee the integrity of data. This article suggests while showing one thing man can do with XML. Indeed XML will help to create a data backup model. The main task will consist in defining an application in JAVA able to convert information of a database in XML format and restore them later.

Feedback-Controlled Server for Scheduling Aperiodic Tasks
This paper proposes a scheduling scheme using feedback control to reduce the response time of aperiodic tasks with soft real-time constraints. We design an algorithm based on the proposed scheduling scheme and Total Bandwidth Server (TBS) that is a conventional server technique for scheduling aperiodic tasks. We then describe the feedback controller of the algorithm and give the control parameter tuning methods. The simulation study demonstrates that the algorithm can reduce the mean response time up to 26% compared to TBS in exchange for slight deadline misses.
Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model
How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.
Two Area Power Systems Economic Dispatch Problem Solving Considering Transmission Capacity Constraints
This paper describes an efficient and practical method for economic dispatch problem in one and two area electrical power systems with considering the constraint of the tie transmission line capacity constraint. Direct search method (DSM) is used with some equality and inequality constraints of the production units with any kind of fuel cost function. By this method, it is possible to use several inequality constraints without having difficulty for complex cost functions or in the case of unavailability of the cost function derivative. To minimize the number of total iterations in searching, process multi-level convergence is incorporated in the DSM. Enhanced direct search method (EDSM) for two area power system will be investigated. The initial calculation step size that causes less iterations and then less calculation time is presented. Effect of the transmission tie line capacity, between areas, on economic dispatch problem and on total generation cost will be studied; line compensation and active power with reactive power dispatch are proposed to overcome the high generation costs for this multi-area system.
Numerical Study of Iterative Methods for the Solution of the Dirichlet-Neumann Map for Linear Elliptic PDEs on Regular Polygon Domains
A generalized Dirichlet to Neumann map is one of the main aspects characterizing a recently introduced method for analyzing linear elliptic PDEs, through which it became possible to couple known and unknown components of the solution on the boundary of the domain without solving on its interior. For its numerical solution, a well conditioned quadratically convergent sine-Collocation method was developed, which yielded a linear system of equations with the diagonal blocks of its associated coefficient matrix being point diagonal. This structural property, among others, initiated interest for the employment of iterative methods for its solution. In this work we present a conclusive numerical study for the behavior of classical (Jacobi and Gauss-Seidel) and Krylov subspace (GMRES and Bi-CGSTAB) iterative methods when they are applied for the solution of the Dirichlet to Neumann map associated with the Laplace-s equation on regular polygons with the same boundary conditions on all edges.
Multi Band Frequency Synthesizer Based on ISPD PLL with Adapted LC Tuned VCO
The 4G front-end transceiver needs a high performance which can be obtained mainly with an optimal architecture and a multi-band Local Oscillator. In this study, we proposed and presented a new architecture of multi-band frequency synthesizer based on an Inverse Sine Phase Detector Phase Locked Loop (ISPD PLL) without any filters and any controlled gain block and associated with adapted multi band LC tuned VCO using a several numeric controlled capacitive branches but not binary weighted. The proposed architecture, based on 0.35μm CMOS process technology, supporting Multi-band GSM/DCS/DECT/ UMTS/WiMax application and gives a good performances: a phase noise @1MHz -127dBc and a Factor Of Merit (FOM) @ 1MHz - 186dB and a wide band frequency range (from 0.83GHz to 3.5GHz), that make the proposed architecture amenable for monolithic integration and 4G multi-band application.
An Experimental Investigation of Thermoelectric Air-Cooling Module
This article experimentally investigates the thermal performance of thermoelectric air-cooling module which comprises a thermoelectric cooler (TEC) and an air-cooling heat sink. The influences of input current and heat load are determined. And performances under each situation are quantified by thermal resistance analysis. Since TEC generates Joule heat, this nature makes construction of thermal resistance network difficult. To simplify the analysis, this article emphasizes on the resistance heat load might meet when passing through the device. Therefore, the thermal resistances in this paper are to divide temperature differences by heat load. According to the result, there exists an optimum input current under every heating power. In this case, the optimum input current is around 6A or 7A. The performance of the heat sink would be improved with TEC under certain heating power and input current, especially at a low heat load. According to the result, the device can even make the heat source cooler than the ambient. However, TEC is not always effective at every heat load and input current. In some situation, the device works worse than the heat sink without TEC. To determine the availability of TEC, this study figures out the effective operating region in which the TEC air-cooling module works better than the heat sink without TEC. The result shows that TEC is more effective at a lower heat load. If heat load is too high, heat sink with TEC will perform worse than without TEC. The limit of this device is 57W. Besides, TEC is not helpful if input current is too high or too low. There is an effective range of input current, and the range becomes narrower when the heat load grows.
On the Reduction of Side Effects in Tomography
As the Computed Tomography(CT) requires normally hundreds of projections to reconstruct the image, patients are exposed to more X-ray energy, which may cause side effects such as cancer. Even when the variability of the particles in the object is very less, Computed Tomography requires many projections for good quality reconstruction. In this paper, less variability of the particles in an object has been exploited to obtain good quality reconstruction. Though the reconstructed image and the original image have same projections, in general, they need not be the same. In addition to projections, if a priori information about the image is known, it is possible to obtain good quality reconstructed image. In this paper, it has been shown by experimental results why conventional algorithms fail to reconstruct from a few projections, and an efficient polynomial time algorithm has been given to reconstruct a bi-level image from its projections along row and column, and a known sub image of unknown image with smoothness constraints by reducing the reconstruction problem to integral max flow problem. This paper also discusses the necessary and sufficient conditions for uniqueness and extension of 2D-bi-level image reconstruction to 3D-bi-level image reconstruction.
Robust Face Recognition using AAM and Gabor Features
In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM.
Progressive AAM Based Robust Face Alignment
AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.
Multi-Scale Gabor Feature Based Eye Localization
Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported so far still need to be improved about precision and computational time for successful applications. In this paper, we propose an eye location method based on multi-scale Gabor feature vectors, which is more robust with respect to initial points. The eye localization based on Gabor feature vectors first needs to constructs an Eye Model Bunch for each eye (left or right eye) which consists of n Gabor jets and average eye coordinates of each eyes obtained from n model face images, and then tries to localize eyes in an incoming face image by utilizing the fact that the true eye coordinates is most likely to be very close to the position where the Gabor jet will have the best Gabor jet similarity matching with a Gabor jet in the Eye Model Bunch. Similar ideas have been already proposed in such as EBGM (Elastic Bunch Graph Matching). However, the method used in EBGM is known to be not robust with respect to initial values and may need extensive search range for achieving the required performance, but extensive search ranges will cause much more computational burden. In this paper, we propose a multi-scale approach with a little increased computational burden where one first tries to localize eyes based on Gabor feature vectors in a coarse face image obtained from down sampling of the original face image, and then localize eyes based on Gabor feature vectors in the original resolution face image by using the eye coordinates localized in the coarse scaled image as initial points. Several experiments and comparisons with other eye localization methods reported in the other papers show the efficiency of our proposed method.
Estimation of Buffer Size of Internet Gateway Server via G/M/1 Queuing Model
How to efficiently assign system resource to route the Client demand by Gateway servers is a tricky predicament. In this paper, we tender an enhanced proposal for autonomous recital of Gateway servers under highly vibrant traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.
Applying Similarity Theory and Hilbert Huang Transform for Estimating the Differences of Pig-s Blood Pressure Signals between Situations of Intestinal Artery Blocking and Unblocking
A mammal-s body can be seen as a blood vessel with complex tunnels. When heart pumps blood periodically, blood runs through blood vessels and rebounds from walls of blood vessels. Blood pressure signals can be measured with complex but periodic patterns. When an artery is clamped during a surgical operation, the spectrum of blood pressure signals will be different from that of normal situation. In this investigation, intestinal artery clamping operations were conducted to a pig for simulating the situation of intestinal blocking during a surgical operation. Similarity theory is a convenient and easy tool to prove that patterns of blood pressure signals of intestinal artery blocking and unblocking are surely different. And, the algorithm of Hilbert Huang Transform can be applied to extract the character parameters of blood pressure pattern. In conclusion, the patterns of blood pressure signals of two different situations, intestinal artery blocking and unblocking, can be distinguished by these character parameters defined in this paper.
Learning Flexible Neural Networks for Pattern Recognition
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.
A New Particle Filter Inspired by Biological Evolution: Genetic Filter
In this paper, we consider a new particle filter inspired by biological evolution. In the standard particle filter, a resampling scheme is used to decrease the degeneracy phenomenon and improve estimation performance. Unfortunately, however, it could cause the undesired the particle deprivation problem, as well. In order to overcome this problem of the particle filter, we propose a novel filtering method called the genetic filter. In the proposed filter, we embed the genetic algorithm into the particle filter and overcome the problems of the standard particle filter. The validity of the proposed method is demonstrated by computer simulation.
Logic Program for Authorizations

As a security mechanism, authorization is to provide access control to the system resources according to the polices and rules specified by the security strategies. Either by update or in the initial specification, conflicts in authorization is an issue needs to be solved. In this paper, we propose a new approach to solve conflict by using prioritized logic programs and discuss the uniqueness of its answer set. Addressing conflict resolution from logic programming viewpoint and the uniqueness analysis of the answer set provide a novel, efficient approach for authorization conflict resolution.

Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm
In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.
A Critical Survey of Reusability Aspects for Component-Based Systems
The last decade has shown that object-oriented concept by itself is not that powerful to cope with the rapidly changing requirements of ongoing applications. Component-based systems achieve flexibility by clearly separating the stable parts of systems (i.e. the components) from the specification of their composition. In order to realize the reuse of components effectively in CBSD, it is required to measure the reusability of components. However, due to the black-box nature of components where the source code of these components are not available, it is difficult to use conventional metrics in Component-based Development as these metrics require analysis of source codes. In this paper, we survey few existing component-based reusability metrics. These metrics give a border view of component-s understandability, adaptability, and portability. It also describes the analysis, in terms of quality factors related to reusability, contained in an approach that aids significantly in assessing existing components for reusability.
Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling
We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.
Thailand National Biodiversity Database System with webMathematica and Google Earth
National Biodiversity Database System (NBIDS) has been developed for collecting Thai biodiversity data. The goal of this project is to provide advanced tools for querying, analyzing, modeling, and visualizing patterns of species distribution for researchers and scientists. NBIDS data record two types of datasets: biodiversity data and environmental data. Biodiversity data are specie presence data and species status. The attributes of biodiversity data can be further classified into two groups: universal and projectspecific attributes. Universal attributes are attributes that are common to all of the records, e.g. X/Y coordinates, year, and collector name. Project-specific attributes are attributes that are unique to one or a few projects, e.g., flowering stage. Environmental data include atmospheric data, hydrology data, soil data, and land cover data collecting by using GLOBE protocols. We have developed webbased tools for data entry. Google Earth KML and ArcGIS were used as tools for map visualization. webMathematica was used for simple data visualization and also for advanced data analysis and visualization, e.g., spatial interpolation, and statistical analysis. NBIDS will be used by park rangers at Khao Nan National Park, and researchers.
Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis
The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.
Climatic Factors Affecting Influenza Cases in Southern Thailand
This study investigated climatic factors associated with influenza cases in Southern Thailand. The main aim for use regression analysis to investigate possible causual relationship of climatic factors and variability between the border of the Andaman Sea and the Gulf of Thailand. Southern Thailand had the highest Influenza incidences among four regions (i.e. north, northeast, central and southern Thailand). In this study, there were 14 climatic factors: mean relative humidity, maximum relative humidity, minimum relative humidity, rainfall, rainy days, daily maximum rainfall, pressure, maximum wind speed, mean wind speed, sunshine duration, mean temperature, maximum temperature, minimum temperature, and temperature difference (i.e. maximum – minimum temperature). Multiple stepwise regression technique was used to fit the statistical model. The results indicated that the mean wind speed and the minimum relative humidity were positively associated with the number of influenza cases on the Andaman Sea side. The maximum wind speed was positively associated with the number of influenza cases on the Gulf of Thailand side.
Larval Occurrence and Climatic Factors Affecting DHF Incidence in Samui Islands, Thailand
This study investigated the number of Aedes larvae, the key breeding sites of Aedes sp., and the relationship between climatic factors and the incidence of DHF in Samui Islands. We conducted our questionnaire and larval surveys from randomly selected 105 households in Samui Islands in July-September 2006. Pearson-s correlation coefficient was used to explore the primary association between the DHF incidence and all climatic factors. Multiple stepwise regression technique was then used to fit the statistical model. The results showed that the positive indoor containers were small jars, cement tanks, and plastic tanks. The positive outdoor containers were small jars, cement tanks, plastic tanks, used cans, tires, plastic bottles, discarded objects, pot saucers, plant pots, and areca husks. All Ae. albopictus larval indices (i.e., CI, HI, and BI) were higher than Ae. aegypti larval indices in this area. These larval indices were higher than WHO standard. This indicated a high risk of DHF transmission at Samui Islands. The multiple stepwise regression model was y = –288.80 + 11.024xmean temp. The mean temperature was positively associated with the DHF incidence in this area.
Computation of D8 Flow Line at Ron Phibun Area, Nakhon Si Thammarat, Thailand
A flow line computational technique based on the D8 method using Mathematica was developed. The technique was applied to Ron Phibun area, Nakhon Si Thammarat Province. This area is highly contaminated with arsenic 3 and 5. It was found that the technique using Mathematica can produce similar results to those obtained from GRASS v 5.0.2.
Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007