Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Abstract Count: 51965

Agricultural and Biosystems Engineering

1256
91637
A Constrained Model Predictive Control Scheme for Simultaneous Control of Temperature and Hygrometry in Greenhouses
Abstract:
The objective of greenhouse climate control is to improve the culture development and to minimize the production costs. A greenhouse is an open system to external environment and the challenge is to regulate the internal climate despite the strong meteorological disturbances. The internal state of greenhouse considered in this work is defined by too relevant and coupled variables, namely inside temperature and hygrometry. These two variables are chosen to describe the internal state of greenhouses due to their importance in the development of plants and their sensitivity to external climatic conditions, sources of weather disturbances. A multivariable model is proposed and validated by considering a greenhouse as black-box system and the least square method is applied to parameters identification basing on collected experimental measures. To regulate the internal climate, we propose a Model Predictive Control (MPC) scheme. This one considers the measured meteorological disturbances and the physical and operational constraints on the control and state variables. A successful feasibility study of the proposed controller is presented, and simulation results show good performances despite the high interaction between internal and external variables and the strong external meteorological disturbances. The inside temperature and hygrometry are tracking nearly the desired trajectories. A comparison study with an On/Off control applied to the same greenhouse confirms the efficiency of the MPC approach to inside climate control.
Digital Article Identifier (DAI):
1255
90734
Effect of Different Levels of Distillery Yeast Sludge on Immune Level, Egg Quality and Performance of Layers as a Substitute for Soybean Meal
Abstract:
There is a dire need to replace high-cost protein with more economical protein to overcome animal protein shortage in developing nations especially countries like Pakistan. In conjunction with these efforts, the current study was planned to evaluate the effects of various dried distillery yeast sludge (DYS) levels on the immune level, egg quality, and performance of layers by replacing soybean meal. The study was designed with two hundred layers of Hy-Line variety. Distillery yeast sludge was dried and ground for 2 mm mesh size and after this proximate and mineral analysis was determined. Five isocaloric and isonitrogeneous feeds were given containing C (control), 5, 10, 15, 20% distillery yeast sludge by replacing soybean meal. The trial was performed in the completely randomized design with five treatments, 4 replicates and 10 hen per replicate. Results demonstrated that feed intake, egg production, feed conversion ratio decreased (P < 0.05) with the increased dietary DYS. However, statistically significant decrease (P < 0.05) was found in hens having DYS20 diet than control. Layers on Diets C, DYS5 and DYS10 exerted a higher immune level than DYS15 and DYS20 diets. Egg weight, eggshell weight, eggshell thickness, egg albumen height as well as haugh unit score were affected significantly by the increased level of DYS. In general, results of this study demonstrated that inclusion of DYS up to 10% showed no adverse effects on health and performance of layers.
Digital Article Identifier (DAI):
1254
90590
The Role of Climate-Smart Agriculture in the Contribution of Small-Scale Farming towards Ensuring Food Security in South Africa
Abstract:
There is need for a great deal of attention on small-scale agriculture for livelihood and food security because of the expanding global population. Small-scale agriculture has been identified as a major driving force of agricultural and rural development. However, the high dependence of the sector on natural and climatic resources has made small-scale farmers highly vulnerable to the adverse impact of climatic change thereby necessitating the need for embracing practices or concepts that will help absorb shocks from changes in climatic condition. This study examines the strategic position of small-scale farming in South African agriculture and in ensuring food security in the country, the vulnerability of small-scale agriculture to climate change and the potential of the concept of climate-smart agriculture to tackle the challenge of climate change. The study carried out a systematic review of peer-reviewed literature touching small-scale agriculture, climate change, food security and climate-smart agriculture, employing the realist review method. Findings revealed that increased productivity in the small-scale agricultural sector has a great potential of improving the food security of households in South Africa and reducing dependence on food purchase in a context of high food price inflation. Findings, however, also revealed that climate change affects small-scale subsistence farmers in terms of productivity, food security and family income, categorizing the impact on smallholder livelihoods into three major groups; biological processes, environmental and physical processes and impact on health. Analysis of the literature consistently showed that climate-smart agriculture integrates the benefits of adaptation and resilience to climate change, mitigation, and food security. As a result, farming households adopting climate-smart agriculture will be better off than their counterparts who do not. This study concludes that climate-smart agriculture could be a very good bridge linking small-scale agricultural sector and agricultural productivity and development which could bring about the much needed food security.
Digital Article Identifier (DAI):
1253
89898
Analysis of Fertilizer Effect in the Tilapia Growth of Mozambique (Oreochromis mossambicus)
Abstract:
This paper analyses the effect of fertilizer (organic and inorganic) in the growth of tilapia. An experiment was implemented in the Aquapesca Company of Mozambique; there were considered four different treatments. Each type of fertilizer was applied in two of these treatments; a feed was supplied to the third treatment, and the fourth was taken as control. The weight and length of the tilapia were used as the growth parameters, and to measure the water quality, the physical-chemical parameters were registered. The results show that the weight and length were different for tilapias cultivated in different treatments. These differences were evidenced mainly by organic and feed treatments, where there was the largest and smallest value of these parameters, respectively. In order to prove that these differences were caused only by applied treatment without interference for the aquatic environment, a Fisher discriminant analysis was applied, which confirmed that the treatments were exposed to the same environment condition.
Digital Article Identifier (DAI):
1252
89796
Determinant Factor of Farm Household Fruit Tree Planting: The Case of Habru Woreda, North Wollo
Abstract:
The cultivation of fruit tree in degraded areas has two-fold importance. Firstly, it improves food availability and income, and secondly, it promotes the conservation of soil and water improving, in turn, the productivity of the land. The main objectives of this study are to identify the determinant of farmer's fruit trees plantation decision and to major fruit production challenges and opportunities of the study area. The analysis was made using primary data collected from 60 sample household selected randomly from the study area in 2016. The primary data was supplemented by data collected from a key informant. In addition to the descriptive statistics and statistical tests (Chi-square test and t-test), a logit model was employed to identify the determinant of fruit tree plantation decision. Drought, pest incidence, land degradation, lack of input, lack of capital and irrigation schemes maintenance, lack of misuse of irrigation water and limited agricultural personnel are the major production constraints identified. The opportunities that need to further exploited are better access to irrigation, main road access, endowment of preferred guava variety, experience of farmers, and proximity of the study area to research center. The result of logit model shows that from different factors hypothesized to determine fruit tree plantation decision, age of the household head accesses to market and perception of farmers about fruits' disease and pest resistance are found to be significant. The result has revealed important implications for the promotion of fruit production for both land degradation control and rehabilitation and increasing the livelihood of farming households.
Digital Article Identifier (DAI):
1251
89780
Inclusive Business and Its Contribution to Farmers Wellbeing in Arsi Ethiopia: Empirical Evidence
Abstract:
Inclusive business models which integrates low-income people with companies value chain in a commercially viable way has gained momentum for the perceived potential to contribute to poverty alleviation and food security in developing countries. This article investigates the impact of Community Revenue Enhancement through Technology Extension (CREATE) project of Heineken brewery on smallholder farmers’ wellbeing in Arsi zone Oromia regional state of Ethiopia. CREATE is a Public-Private Partnership (PPP) between Ministry of Foreign Affairs of the Netherlands and Heineken N.V. which source malt barely from smallholder farmers in three zones of Oromia. The study assessed the impact of CREATE on malt barley productivity, food security and new asset purchase in Arsi zone by comparing households that participate in the project with non-participating households using propensity score matching method. The finding indicated that households that participated in the CREATE project had higher malt barley productivity and purchased more new assets than non-participating households. However, there is no significant difference on food security status of participating and non-participating households indicating that the project has a profound impact on asset accumulation than on food security improvement.
Digital Article Identifier (DAI):
1250
89645
Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer
Abstract:
Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.
Digital Article Identifier (DAI):
1249
89393
Effect of Different Planting Times and Mulching Materials on Seed Quality and Yield of China Aster Cultivars
Abstract:
The present investigations were carried out at the experimental farm of Department of Floriculture and Landscape Architecture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P. during 2015 and 2016. The experiment was laid out in a Randomized Block Design (factorial) consisting of 48 treatment combinations of four planting dates viz., D1- mid March, D2-mid April, D3-mid May and D4- mid June and two cultivars namely V1- Kamini and V2 -Poornima with six mulching materials M¬0¬- without mulch, M1- Black plastic mulch (100 µ), M2- Silver plastic mulch (100 µ), M3¬- Transparent plastic mulch (100 µ), M3-Transparent plastic mulch (100 µ), M4¬- Pine needle (100 µ) and M5- Grass (1 inch layer). Among different planting times, D4 i.e. mid June planting obtained best results for number of seed per flower (179.38), germination percent (83.92 %), electrical conductivity (0.97 ds/m), seedling length (7.93 cm), seedling dry weight (7.09 mg), seedling vigour index I (763.79), moisture content (7.83 %) and 1000 seed weight (1.94 g). However, seed yield per plant (14.30 g) was recorded to be maximum in mid of March. Among the cultivars, cv. ‘Poornima’ gave best results for number of seed per plant (187.30). However, cv. ‘Kamini’ recorded the best result for seed yield per plant (12.55), electrical conductivity (1.11 ds/m), germination percent (80.47 %), seedling length (6.39 cm), seedling dry weight (5.11 mg), seedling vigour index I (649.49), moisture content (9.28 %) and 1000 seed weight (1.70 g). Silver plastic obtained best results for number of seed per flower (170.10), seed yield per plant (15.66 g), germination percent (80.17 %), electrical conductivity (1.26 ds/m), seedling length (5.88 cm), seedling dry weight (4.46 mg), seedling vigour index I (616.78), Moisture content (9.35 %) and 100 seed weight (1.97 g).
Digital Article Identifier (DAI):
1248
89087
Effect of Melatonin on Seed Germination and Seedling Growth of Catharanthus roseus under Cadmium Stress
Abstract:
In this study, 200 µM Cd reduced relative seed germination, root elongation tolerance and seed germination tolerance index of Catharanthus roseus. The melatonin improved seed germination, germination velocity, seedling length and vigor index under Cd stress in a dose-dependent manner and the maximum biological responses obtained by 100 μM melatonin. However, 200-400 μM melatonin and 400 μM SNP had negative effects that evidenced as lower germination indices and poor establishment of seedlings. The cadmium suppressed amylase activity and contents of soluble and reducing sugars in germinating seeds, thereby reduced seed germination and subsequent seedling growth whereas increased electrolyte leakage. These Cd-induced inhibitory effects were ameliorated by melatonin.
Digital Article Identifier (DAI):
1247
89083
Impact of Nano-Anatase TiO₂ on the Germination Indices and Seedling Growth of Some Plant Species
Abstract:
In this study, the effects of nTiO₂ on seed germination and growth of six plant species (wheat, soybean, tomato, canola, cucumber, and lettuce) were evaluated in petri dish (direct exposure) and in soil in a greenhouse experiment (soil exposure). Data demonstrate that under both culture conditions, low or mild concentrations of nTiO₂ either stimulated or had no effect on seed germination, root growth and vegetative biomass while high concentrations had an inhibitory effect. However, results showed that the impacts of nTiO₂ on plant growth in soil were partially consistent with those observed in pure culture. Based on both experiment sets, among above six species, lettuce and canola were the most susceptible and the most tolerant species to nTiO₂ toxicity. However, results revealed the impacts of nTiO₂ on plant growth in soil were less than petri dish exposure probability due to dilution in soil and complexation/aggregation of nTiO₂ that would lead to lower exposure of plants. The high concentrations of nTiO₂ caused significant reductions in fresh and dry weight of aerial parts and root and chlorophyll and carotenoids contents of all species which also coincided with further accumulation of malondialdehyde (MDA). These findings suggest that decreasing growth might be the result of an nTiO₂-induced oxidative stress and disturbance of photosynthesis systems.
Digital Article Identifier (DAI):
1246
88779
Phytotechnologies for Use and Reconstitution of Contaminated Sites
Abstract:
Green chemistry concept is focused on the prevention of environmental pollution caused by human activity. However, there are a lot of contaminated areas in the world which pose a serious threat to ecosystems in terms of their conservation. Therefore in accordance with the principles of green chemistry, it should not be forgotten about the need to clean these areas. Furthermore, the waste material often contains the valuable components, the extraction of which by traditional wet chemical technologies is inefficient both from the economic and environmental protection standpoint. Wherein, the plants may be successfully used to ‘scavenge’ a range of metals from polluted land sites in an approach allowing to carry out both of these processes – phytoremediation and phytomining in conjunction. The goal of the present work was to study bioaccumulation ability of floating macrophytes such as water hyacinth and pondweed toward Hg, Ba, Cd, Mo and Pb as pollutants in aquatic medium and terrestrial plants (birch, reed, and cane) towards gold and silver as valuable components. The peculiarity of ongoing research was that the plants grew under extreme conditions (pH of drainage and pore waters was about 2.5). The study was conducted at the territory of Ursk tailings (Southwestern Siberia, Russia) formed as a result of primary polymetallic ores cyanidation. The waste material is mainly presented (~80%) by pyrite (FeS₂) and barite (BaSO₄), the raw minerals included FeAsS, HgS, PbS, Ag₂S as minor ones. It has been shown that water hyacinth demonstrates high ability to accumulate different metals, and what is especially important – to remove mercury from polluted waters with BCF value more than 1000. As for the gold, its concentrations in reed and cane growing near the waste material were estimated as 500 and 900 μg∙kg⁻¹ respectively. It was also found that the plants can survive under extreme conditions of acidic environment and hence we can assume that there is a principal opportunity to use them for the valuable substances extraction from an area of the mining waste dumps burial.
Digital Article Identifier (DAI):
1245
88664
Cotton Fiber Quality Improvement by Introducing Sucrose Synthase (SuS) Gene into Gossypium hirsutum L.
Abstract:
The demand for long staple fiber having better strength and length is increasing with the introduction of modern spinning and weaving industry in Pakistan. Work on gene discovery from developing cotton fibers has helped to identify dozens of genes that take part in cotton fiber development and several genes have been characterized for their role in fiber development. Sucrose synthase (SuS) is a key enzyme in the metabolism of sucrose in a plant cell, in cotton fiber it catalyzes a reversible reaction, but preferentially converts sucrose and UDP into fructose and UDP-glucose. UDP-glucose (UDPG) is a nucleotide sugar act as a donor for glucose residue in many glycosylation reactions and is essential for the cytosolic formation of sucrose and involved in the synthesis of cell wall cellulose. The study was focused on successful Agrobacterium-mediated stable transformation of SuS gene in pCAMBIA 1301 into cotton under a CaMV35S promoter. Integration and expression of the gene were confirmed by PCR, GUS assay, and real-time PCR. Young leaves of SuS overexpressing lines showed increased total soluble sugars and plant biomass as compared to non-transgenic control plants. Cellulose contents from fiber were significantly increased. SEM analysis revealed that fibers from transgenic cotton were highly spiral and fiber twist number increased per unit length when compared with control. Morphological data from field plants showed that transgenic plants performed better in field conditions. Incorporation of genes related to cotton fiber length and quality can provide new avenues for fiber improvement. The utilization of this technology would provide an efficient import substitution and sustained production of long-staple fiber in Pakistan to fulfill the industrial requirements.
Digital Article Identifier (DAI):
1244
88193
Effect of Aminoethoxyvinylglycine on Ceasing in Sweet Orange
Abstract:
Creasing is a physiological disorder of rind in sweet orange [Citrus sinensis (L.) Osbeck] fruit and causes serious economic losses in various countries of the world. The reversible inhibitor of ethylene, aminoethoxyvinylglycine (AVG) with the effects of different concentrations (0, 20, 40 and 60 mgL⁻¹) AVG with 0.05% ‘Tween 20’ as a surfactant applied at the fruit set, the golf ball or at the colour break stage on controlling creasing, rheological properties of fruit and rind as well as fruit quality in of Washington Navel and Lane Late sweet orange was investigated. Creasing was substantially reduced and fruit quality was improved with the exogenous application of AVG depending upon its concentration and stage of application in both cultivars. The spray application of AVG (60 mgL⁻¹) at the golf ball stage was effective in reducing creasing (27.86% and 24.29%) compared to the control (52.14 and 51.53%) in cv. Washington Navel during 2011 and 2012, respectively. Whilst, in cv. Lane Late lowest creasing was observed When AVG was applied at fruit set stage (22.86%) compared to the control (51.43%) during 2012. In cv. Washington Navel, AVG treatment (60 mgL⁻¹) was more effective to increase the fruit firmness (318.97 N) and rind hardness (25.94 N) when applied at fruit set stage. However, rind tensile strength was higher, when AVG was applied at the golf ball stage (54.13 N). In cv. Lane Late, the rind harness (28.61 N), rind tensile strength (78.82 N) was also higher when AVG was sprayed at fruit set stage. Whilst, the fruit compression force (369.68 N) was higher when AVG was applied at the golf ball stage. Similarly, the treatment AVG (60 mgL⁻¹) was more effective in improving fruit weight (281.00 and 298.50 g) and fruit diameter (87.30 and 82.69 mm), rind thickness (5.56 and 5.38 mm) and total sugars (15.27 mg.100ml⁻¹) when AVG was applied at the fruit golf ball stage in cv. Washington Navel and Lane Late, respectively. Similarly, rind harness (25.94 and 28.61 N), total antioxidants (45.30 and 46.48 mM trolox 100ml⁻¹), total sugars (13.64 and 15.27 mg.100ml⁻¹), citric acid (1.66 and 1.32 mg100ml⁻¹), malic acid (0.36 and 0.63 mg.100ml⁻¹) and succinic acid (0.35 and 0.38 mg100ml⁻¹) were also higher, when AVG was applied at the fruit set stage in both cultivars. In conclusion, the exogenous applications of AVG substantially reduces the creasing incidence, improves rheological properties of fruit and rind as well as fruit quality in Washington Navel and Lane Late sweet orange fruit.
Digital Article Identifier (DAI):
1243
88189
Effect of Tree Age on Fruit Quality of Different Cultivars of Sweet Orange
Abstract:
Amongst citrus species, sweet orange (Citrus sinensis L. Osbeck) occupies a dominant position in the orange producing countries in the world. Sweet orange is widely consumed both as fresh fruit as well as juice and its global demand is attributed due to higher vitamin C and antioxidants. Fruit quality is most important for the external appearance and marketability of sweet orange fruit, especially for fresh consumption. There are so many factors affecting fruit quality, tree age is the most important one, but remains unexplored so far. The present study, we investigated the role of tree age on fruit quality of different cultivars of sweet oranges. The difference between fruit quality of 5-year young and 15-year old trees was discussed in the current study. In case of fruit weight, maximum fruit weight (238g) was recorded in 15-year old sweet orange cv. Sallustiana cultivar while minimum fruit weight (142g) was recorded in 5-year young tree of Succari sweet orange fruit. The results of the fruit diameter showed that the maximum fruit diameter (77.142mm) was recorded in 15-year old Sallustiana orange but the minimum fruit diameter (66.046mm) was observed in 5-year young tree of sweet orange cv. Succari. The minimum value of rind thickness (4.142mm) was noted in 15-year old tree of cv. Red blood. On the other hand maximum value of rind thickness was observed in 5-year young tree of cv. Sallustiana. The data regarding total soluble solids (TSS), acidity (TA), TSS/TA, juice content, rind, flavedo thickness, pH and fruit diameter have also been discussed.
Digital Article Identifier (DAI):
1242
87874
Nutritional Status of Rural Women in Bengaluru Rural District of Karnataka, India
Abstract:
Women play a vital role in ensuring proper development and growth of children. They also contribute significantly towards income generation, food preparation and health. Nutritional status reflects the health of a person and is influenced by the quality of foods eaten and the ability of the body to utilize these foods to meet its needs it is affected by various socio-economic factors including income, family size, occupation and educational status of the people. The study was undertaken on nutritional status of rural women in Heggadehalli of Doddaballapurtaluk and Venkathalli of Devanahallitaluk in Bengaluru rural district with the sample size of 200 respondents. The prevalence of symptoms of malnutrition in a community is in turn a reflection of dietary consumption of its members. Mean anthropometric measurement of rural women were 153.8 cm of height, 46.8 kg of weight. In comparison with the mean BMI standards, it was observed that 20 percent of women were under nourished, 64 percent of women were normal and 16 percent women were obese. In comparison with the mean waist/hip ratio with standards, it was observed that 84 percent were in normal category and 16 percent were obese. Education, land holding, income and age had significant positive association with anthropometric measurements of rural women. The deficient level of haemoglobin existed in 53 percent of rural women, low in 20 percent and only 27 percent had acceptable level. The occurrence of morbidity symptoms was higher in rural women, its illness reported among women in the study were pain in hands and legs, backache, headache, pain in abdomen, fever, weakness, cold and cough and acidity. This may be due to considerable amount of workload on women who spend 8 to 9 hours at work and after returning continue their day’s work at home also.
Digital Article Identifier (DAI):
1241
87732
Agro-Climatic Analysis in the Northern Areas of Khyber Pakhtunkhwa, Pakistan
Abstract:
A research study was conceded in four locations (Swat, Dir, Kakul and Balakot) of Khyber Pakhtunkhwa, to find agro-climatic classes by using aridity index, Growing Degree Days of wheat and maize, crop growth index and Spatio-temporal analysis of rainfall by using long term climatic data (1970-2010). The climatic data used for research was acquired from Pakistan Meteorological Department (PMD) Islamabad, Agriculture Research Institute, Weather Station Peshawar and Tarnab Peshawar. Agro-climatic classes of each location were determined using three criteria mean temperature of the coldest month, mean temperature of the warmest month and aridity index. The agro-climatic classes of Dir, Swat, Kakul and Balakot were classified as Humid, Cold and very Warm (H-K-VW). Average aridity index of wheat for Dir, Swat, Kakul, and Balakot was 2.23, 2.67, 1.94 and 2.34 and for Maize was 1.31, 1.26, 1.97, and 2.83 respectively. The overall and decade-wise trend of GDD of Wheat and Maize was declined in Swat and Kakul while increased in Dir and Balakot.The average maximum CGI (1.26) and (0.73) of Wheat and Maize was observed for Balakot and Dir, while the minimum (1.09) and (0.62) was observed for Swat and Kakul. Spatio-temporal analysis of rainfall shows that the trend has increased in Swat while decreased in Dir, Kakul and Balakot. From the relation between rainfalls with altitude showed that there was an increasing trend between rainfalls with altitude. The maximum average rainfall was in Swat (2703mm) on altitude 2000m while the minimum average rainfall was observed in Kakul (1410mm) on altitude of 1255m.
Digital Article Identifier (DAI):
1240
87504
Income Diversification of Small Holder Farmers in Bosso Local Government Area of Niger State, Nigeria
Abstract:
This study was conducted to examine the income diversification of smallholder farmers in Bosso Local Government area of Niger state, Nigeria. The specific objectives were to examine the socio-economic characteristics of the farmers, identify the sources of income among the farmers, determine the pattern of income diversification and evaluate the determinants of income diversification of farmers in the study area. A multi-stage sampling technique was used to select 94 respondents for the study. Primary data were used, and these were collected with aid of a well structured interview schedule. Descriptive statistics, diversity index, and Tobit regression model were employed to analyze the data. The mean age of the farmers was 44 years. The average household size was 8 members per household, and the average farming experience was 12 years. 21.27 percent did not have formal education. It was further found that 69.1 percent of the respondents had an income diversity index of 0.3-0.4. This indicated that their level of income diversification was moderately low. The determinants of income diversification in the study area were education, household size, marital status, and primary income. These variables were positively related to income diversification. The study revealed that diversification into various income sources has helped to increase household income to sustain the family demands even though their level of income diversification was low within the study area.
Digital Article Identifier (DAI):
1239
87293
Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia
Abstract:
Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.
Digital Article Identifier (DAI):
1238
87119
Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant
Abstract:
The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations.
Digital Article Identifier (DAI):
1237
86947
The Effects of Inoculation and N Fertilization on Soybean (Glycine max (L.) Merr.) Seed Yield and Protein Concentration under Drought Stress
Abstract:
Using mineral fertilization is increasing worldwide, as it is claimed to be majorly responsible for achieving high yields; however, the negative impacts of mineral fertilization on soil and environment are becoming more obvious, with alternative methods being more necessary and applicable, especially with the current climatic changes which have imposed serious abiotic stresses, such as drought. An experiment was made during 2017 growing season in Debrecen, Hungary to investigate the effects of inoculation and N fertilization on the seed yield and protein concentration of the soybean (Glycine max (L.) Merr.) cultivar (Panonia Kincse) under three different irrigation regimes: severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Three N fertilizer rates were applied: no N fertilizer (0 N), 35 kg ha⁻¹ of N fertilizer (35 N) and 105 kg ha⁻¹ of N fertilizer (105 N). Half of the seeds in each treatment was inoculated with Bradyrhizobium japonicum inoculant, and the other half was not inoculated. The results showed significant differences in the seed yield associated with inoculation, irrigation and the interaction between them, whereas there were no significant differences in the seed yield associated with fertilization alone or in interaction with inoculation or irrigation or both. When seeds were inoculated, yield was increased when (35 N) was applied compared to (0 N) but not significantly; however, the high rate of N fertilizer (105 N) reduced the yield to a level even less than (0 N). When seeds were not inoculated, the highest rate of N increased the yield the most compared to the other two N fertilizer rates whenever the drought was present (moderate or severe). Under severe drought stress, inoculation was positively and significantly correlated with yield; however, adding N fertilizer increased the yield of uninoculated plants compared to the inoculated ones, regardless of the rate of N fertilizer. Protein concentration in the seeds was significantly affected by irrigation and by fertilization, but not by inoculation. Protein concentration increased as the N fertilization rate increased, regardless of the inoculation or irrigation treatments; moreover, increasing the N rate reduced the correlation coefficient of protein concentration with the irrigation. It was concluded that adding N fertilizer is not always recommended, especially when seeds are inoculated before being sown; however, it is very important under severe drought stress to sustain yield. Enhanced protein concentrations could be achieved by applying N fertilization, whether the seeds were pre-inoculated or not.
Digital Article Identifier (DAI):
1236
86869
Effect of Ultrasonic Assisted High Pressure Soaking of Soybean on Soymilk Properties
Abstract:
This study investigates the effect of ultrasound-assisted high pressure (HP) treatment on the soaking characteristic of soybeans and extracted soy milk quality. The soybean (variety) was subjected to sonication (US) at ambient temperature for 15 and 30 min followed by HP treatment in the range of 200-400 MPa for dwell times 5-10 min. The bean samples were also compared with HPP samples (200-400 MPa; 5-10 mins), overnight soaked samples(12-15 h) and thermal treated samples (100°C/30 min) followed by overnight soaking for 12-15 h soaking. Rapid soaking within 40 min was achieved by the combined US-HPP treatment, and it reduced the soaking time by about 25 times in comparison to overnight soaking or thermal treatment followed by soaking. Reducing the soaking time of soybeans is expected to suppress the development of undesirable beany flavor of soy milk developed during normal soaking milk extraction. The optimum moisture uptake by the sonicated-pressure treated soybeans was 60-62% (w.b) similar to that obtained after overnight soaking for 12-15 h or thermal treatment followed by overnight soaking. pH of soy milk was not much affected by the different US-HPP treatments and overnight soaking which centered around the range of 6.6-6.7 much like the normal cow milk. For milk extracted from thermally treated soy samples, pH reduced to 6.2. Total soluble solids were found to be maximum for the normal overnight soaked soy samples, and it was in the range of 10.3-10.6. For the HPP treated soy milk, the TSS reduced to 7.4 while sonication further reduced it to 6.2. TSS was found to be getting reduced with increasing time of ultrasonication. Further reduction in TSS to 2.3 was observed in soy milk produced from thermally treated samples following overnight soaking. Our results conclude that thermally treated beans' milk is less stable and more acidic, soaking is very rapid compared to overnight soaking hence milk productivity can be enhanced with less development of undesirable beany flavor.
Digital Article Identifier (DAI):
1235
86845
The Study on Enhanced Micro Climate of the Oyster Mushroom Cultivation House with Multi-Layered Shelves by Using Computational Fluid Dynamics Analysis in Winter
Abstract:
Oyster mushrooms are one of the ingredients that Koreans prefer. The oyster mushroom cultivation house has multiple layers in order to increase the mushroom production per unit area. However, the growing shelves in the house act as obstacles and hinder the circulation of the interior air, which leads to the difference of cultivation environment between the upper part and lower part of the growing shelves. Due to this difference of environments, growth distinction occurs according to the area of the growing shelves. It is known that minute air circulation around the mushroom cap facilitates the metabolism of mushrooms and improves its quality. This study has utilized the computational fluid dynamics (CFD) program, that is, FLUENT R16, in order to analyze the improvement of the internal environment uniformity of the oyster mushroom cultivation house. The analyzed factors are velocity distribution, temperature distribution, and humidity distribution. In order to maintain the internal environment uniformity of the oyster mushroom cultivation house, it appeared that installing circulation fan at the upper part of the working passage towards the ceiling is effective. When all the environmental control equipment – unit cooler, inlet fan, outlet fan, air circulation fan, and humidifier - operated simultaneously, the RMS figure on the growing shelves appeared as follows: velocity 28.23%, temperature 30.47%, humidity 7.88%. However, when only unit cooler and air circulation fan operated, the RMS figure on the growing shelves appeared as follows: velocity 22.28%, temperature 0.87%, humidity 0.82%. Therefore, in order to maintain the internal environment uniformity of the mushroom cultivation house, reducing the overall operating time of inlet fan, outlet fan, and humidifier is needed, and managing the internal environment with unit cooler and air circulation fan appropriately is essential.
Digital Article Identifier (DAI):
1234
86765
Application of Rare Aquatic Plants (Salvinia natans) for Wastewater Treatment under Algerian Semi-Arid Climate
Abstract:
Macrophyte pond has developed strongly in the field of wastewater treatment for irrigation in rural areas and small communities. Their association allows, in some cases, to increase the hydraulic capacity while maintaining the highest level of quality. The present work is devoted to the treatment of domestic wastewater under climatic conditions of Algeria (semi-arid) through a system using two tanks planted with Salvinia natans. The performance study and treatment efficiency of the system overall shows that the latter provides a significant removal of nitrogen pollution: total Kjeldahl nitrogen NTK (85.2%), Ammonium NH4+-N (79%), Nitrite NO2--N (40%) also, a major meaningful reduction of biochemical oxygen demand BOD5 was observed at the output of the system (96.9 %). As BOD5, the chemical oxygen demand (COD) removal was higher than 95 % at the exit of the two tanks. A moderately low yield of phosphate-phosphorus (PO43-P) was achieved with values not exceeding 37 %. In general, the quality of treated effluent meets the Algerian standard of discharge and which allows us to select a suitable species in constructed wetland treatment systems under semi-arid climate.
Digital Article Identifier (DAI):
1233
86687
Effect of Biostimulants on Downstream Processing of Endophytic Fungi Hosted in Aromatic Plant, Ocimum basicilium
Abstract:
Endophytic microbes are hosted inside plants in a symbiotic and hugely benefitting relationship. Exploring agriculturally beneficial endophytes is quite a prospective field of research. In the present work fungal endophytes associated with aromatic plant Ocimum basicilium L. were investigated for biocontrol potential. The anti-plant pathogenic activity of fungal endophytes was tested against causal agent of stem rot Sclerotinia sclerotiorum. 75 endophytic fungi were recovered through culture-dependent approach. Fungal identification was performed both microscopically and by rDNA ITS sequencing. Curvuaria lunata (Sb-6) and Colletotrichum lindemuthianum (Sb-8) inhibited 86% and 72% mycelia growth of S. sclerotinia on Sabouraud dextrose agar medium at 7.4 pH. Small-scale fermentation was carried out on sterilised oatmeal grain medium. In another set of experiment, fungi were grown in oatmeal grain medium amended with certain biostimulants such as aqueous seaweed extract (10% v/w); methanolic seaweed extract (5% v/w); cow urine (20% v/w); biochar (10% w/w) in triplicate along with control of each to ascertain the degree of metabolic difference and anti-plant pathogenic activity induced. Phytochemically extracts of both the fungal isolates showed the presence of flavanoids, phenols, tannins, alkaloids and terpenoids. Ethylacetate extract of C. lunata and C. lindemuthianum suppressed S. sclerotinia conidial germination at IC50 values of 0.514± 0.02 and 0.913± 0.04 mg/ml. Therefore, fungal endophytes of O. basicilium are highly promising bio-resource agent, which can be developed further for sustainable agriculture.
Digital Article Identifier (DAI):
1232
86573
The Effect of Conservative Tillage on Physical Properties of Soil and Yield of Rainfed Wheat
Abstract:
In order to study the effect of conservative tillage on a number of physical properties of soil and the yield of rainfed wheat, an experiment in the form of a randomized complete block design (RCBD) with three replications was conducted in a field in Aliabad County, Iran. The study treatments included: T1) Conventional method, T2) Combined moldboard plow method, T3) Chisel-packer method, and T4) Direct planting method. During early October, the study soil was prepared based on these treatments in a field which was used for rainfed wheat farming in the previous year. The apparent specific gravity of soil, weighted mean diameter (WMD) of soil aggregates, soil mechanical resistance, and soil permeability were measured. Data were analyzed in MSTAT-C. Results showed that the tillage practice had no significant effect on grain yield (p < 0.05). Soil permeability was 10.9, 16.3, 15.7 and 17.9 mm/h for T1, T2, T3 and T4, respectively.
Digital Article Identifier (DAI):
1231
85874
Combining Transcriptomics, Bioinformatics, Biosynthesis Networks and Chromatographic Analyses for Cotton Gossypium hirsutum L. Defense Volatiles Study
Abstract:
Cotton Gossypium hirsutum L. is one of the most important industrial crops, producing the world leading natural textile fiber, but is very prone to arthropod attacks that reduce crop yield and quality. Cotton cultivation, therefore, makes an outstanding use of chemical pesticides. In reaction to herbivorous arthropods, cotton plants nevertheless show natural defense reactions, in particular through volatile organic compounds (VOCs) emissions. These natural defense mechanisms are nowadays underutilized but have a very high potential for cotton cultivation, and elucidating their genetic bases will help to improve their use. Simulating herbivory attacks by mechanical wounding of cotton plants in greenhouse, we studied by qPCR the changes in gene expression for genes of the terpenoids biosynthesis pathway. Differentially expressed genes corresponded to higher levels of the terpenoids biosynthesis pathway and not to enzymes synthesizing particular terpenoids. The genes were mapped on the G. hirsutum L. reference genome; their global relationships inside the general metabolic pathways and the biosynthesis of secondary metabolites were visualized with iPath2. The chromatographic profiles of VOCs emissions indicated first monoterpenes and sesquiterpenes emissions, dominantly four molecules known to be involved in plant reactions to arthropod attacks. As a result, the study permitted to identify potential key genes for the emission of volatile terpenoids by cotton plants in reaction to an arthropod attack, opening possibilities for molecular-assisted cotton breeding in benefit of smallholder cotton growers.
Digital Article Identifier (DAI):
1230
85811
Productivity, Phenolic Composition and Antioxidant Activity of Arrowroot (Maranta arundinacea)
Abstract:
Among Brazilian plant diversity, many species are used as food and considered minor crops (non-conventional plant foods) (NCPF). Arrowroot (Maranta arundinacea) is a NCPF from which starch is extracted from rhizome do not have gluten. Thus, arrowroot flower starch can be consumed by celiac people. Additional, some medicinal and functional proprieties are assigned to arrowroot leaves which currently are underutilized. In Brazil, it’s cultivated mainly by small scale farmers and there is no specific recommendation for fertilization. This work aimed to determinate the best fertilization for rhizome production and to verify its influence in phenolic composition and antioxidant activity of leaf extracts. Two arrowroot varieties, “Common” and “Seta”, were cultivated in organic system at state of Minas Gerais, Brazil, using cattle manure with three levels of nitrogen (N) (0, 300 and 900 kg N ha-1). The experiment design was in randomized block with four replicates. The highest production of rhizomes in both varieties, “Common” (38198.24 kg ha-1) and “Seta” (43567.71 kg ha-1), were obtained with the use of 300 kg N ha-1. With this fertilization, the total aerial part, petiole and leaf production in the varieties were respectively: “Common” (190.312 kg ha-1; 159.312 kg ha-1; 31.100 kg ha-1) and “Seta” (207.656 kg ha-1; 180.539 kg ha-1; 27.062 kg ha-1). Methanolic leaf extracts were analysed by HPLC-DAD. The major phenolic compounds found were caffeioylquinic acids, p-coumaric derivatives and flavonoids. In general, the production of these compounds significantly decreases with the increase levels of nitrogen (900 kg N ha-1). With 300 kg N ha-1 the phenolic production was similar to control. The antioxidant activity was evaluated using DPPH method and was detected around 60% of radical scavenging when 0.1 mg/mL of plant extracts were used. We concluded that fertilization with 300 kg N ha-1 increased arrowroot rhizome production, maintaining phenolic compounds yield at leaves.
Digital Article Identifier (DAI):
1229
85793
Retrospective Analysis of the Damage of Agricultural Crops from Hail in Eastern Georgia
Abstract:
Georgia is one of the hail-dangerous countries of world. The work on action on hail processes in Georgia was conducted in 1960-1989 (East Georgia) over the total area of approximately 1.2 million hectares with average positive economic effect near 75 %. In 2015 in East Georgia, the anti-hail service was restored. Therefore, for the estimation of the effectiveness of action on the hail processes at present, arose the need for the detailed analysis of damage from the hail in the past. The work presents the analysis of the data about the number of days with the hail, the areas of damage of agricultural crops (general and to 100 %), and also the economic damage from the hail, of the caused loss to agricultural crops on the territories land of 123 separate populated areas of into 1982 and 1984-1989. In particular, on the average to one populated area, the total area of agricultural crops damaged from the hail was approximately 140 hectares, to 100% damage - 60 hectares, economic damage - 120 thousand US dollars. The corresponding maps of the distribution of the damaged areas on the investigated territory with the use of GIS-technologies are obtained.
Digital Article Identifier (DAI):
1228
85101
Gender Perception on Food Waste within the Household and Community: Case Study in Bandung City, Indonesia
Abstract:
In Indonesia, the majority of those who manage food waste are women. It is Indonesian culture that women act as household managers. Therefore, women as household managers hold an important role in reducing food waste within households. Meanwhile, in the community, women’s organisations are some of the most active organisations dealing with food waste. Food waste has an increasing profile and is the subject of much global attention and have economic, social and environmental impacts. Reducing food waste will improve future food availability in the context of global population growth and increasing resource scarcity. The aim of this research is to investigate women’s experience and understanding of dealing with food waste in the household and in the community. The research will use an inductive approach using in-depth qualitative methods. In terms of data collection, two methods will be used - questionnaire and interviews. All in all, it could be claimed that women, both within the household and the community in Indonesia, hold an important role in dealing with food waste.
Digital Article Identifier (DAI):
1227
85035
Efficacy of DAPG Producing Fluorescent Pseudomonas for Enhancing Nutrient Use Efficacy, Bio-Control of Soil-Borne Diseases and Yield of Groundnut
Abstract:
Groundnut (Arachis hypohaea L.) is called as “King of oilseeds” and one of the most important food and cash crops in Indian subcontinent. Yield and quality of oil are negatively correlated with poor or imbalanced nutrition and constant exposure to both biotic and abiotic stress factors. Variety of diseases affect groundnut plant, most of them are caused by fungi and lead to severe yield loss. Imbalanced nutrition increases the concerns of environmental deterioration which includes soil fertility. Among different microbial antagonists, Pseudomonas is common member of the plant growth promoting rhizobacteria microflora present in the rhizosphere of groundnut. These are known to produce a beneficial effect on groundnut due to their high metabolic activity leading to the production of enzymes, exopolysaccharides, secondary metabolites, and antibiotics. The ability of pseudomonas lies on their ability to produce antibiotic metabolites such as 2, 4-diacetylphloroglucinol (DAPG). DAPG can inhibit the growth of fungal pathogens namely collar rot and stem rot and also increase the availability of plant nutrients through increased solubilization and uptake of nutrients. Hence, the present study was conducted for three consecutive years (2014 to 2016) in vertisol during the rainy season to assess the efficacy of DAPG producing fluorescent pseudomonas for enhancing nutrient use efficacy, bio-control of soil-borne diseases and yield of groundnut at University of Agricultural Sciences, Dharwad farm. The experiment was laid out in an RCBD with three replications and seven treatments. The mean of three years data revealed that the effect of DAPG-producing producing fluorescent pseudomonas enhanced groundnut yield, uptake of nitrogen and phosphorus and nutrient use efficiency and also found to be effective in bio-control of collar rot and stem rot incidence leading to increase pod yield of groundnut. Higher dry pod yield of groundnut was obtained with DAPG 2(3535 kg ha-1) closely followed by DAPG 4(3492 kg ha-1), FP 98(3443 kg ha-1), DAPG 1(3414 kg ha-1), FP 86(3361 kg ha-1) and Trichoderma spp. (3380 kg ha-1) over control(3173 kg ha-1). A similar trend was obtained with other growth and yield attributing parameters. N uptake ranged from 8.21 percent to FP 86 to 17.91 percent with DAPG 2 and P uptake ranged between 5.56 percent with FP 86 to 16.67 percent with DAPG 2 over control. The first year, there was no incidence of collar rot. During the second year, the control plot recorded 2.51 percent incidence and it ranged from 0.82 percent to 1.43 percent in different DAPG-producing fluorescent pseudomonas treatments. The similar trend was noticed in the third year with lower incidence. The stem rot incidence was recorded during all the three years. Mean data indicated that the control plot recorded 2.65 percent incidence and it ranged from 0.71 percent to 1.23 percent in different DAPG-producing fluorescent pseudomonas treatments. The increase in net monetary benefits ranged from Rs.5975 ha-1 to Rs.11407 ha 1 in different treatments. Hence, as a low-cost technology, seed treatment with available DAPG-producing fluorescent pseudomonas has a beneficial effect on groundnut for enhancing groundnut yield, nutrient use efficiency and bio-control of soil-borne diseases.
Digital Article Identifier (DAI):