Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Abstract Count: 44166

Bioengineering and Life Sciences

1431
77327
Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae
Abstract:
Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.
1430
77323
Temperature as a Tool to Enhance Biofuel Characteristics of Indigeneous Chlorella Sorokiniana Integrated with Phycoremediation
Abstract:
All anthropogenic activities generate liquid or gaseous waste which when discharged into the environment, causes pollution of natural resources. Phycoremediation is the process of removing pollutants from aqua-waste using algae which is safe for the environment as well as can be used for recovery of bioresources. The microalgae have an ability to rapidly divide and accumulate lipids while removing nutrient from wastewater and remediating it. The biomass from photosynthetic microalga is a potential feedstock for producing biodiesel. We have screened an indigenous fast growing oleaginous microalga from the wastewater of Neela-Hauz Lake, New Delhi which is a sewage fed urban water body. The strain identity was discerned using the 16S and 18S rDNA and named as Chlorella sorokiniana-I (ICGEB) based on the DNA sequence homology with C. sorokiniana species. The growth kinetics of C. sorokiniana-I was evaluated using different parameters such as dry cell weight, total lipid content and fatty acid methyl ester (FAME) over a range of temperatures and nutrient media. The biomass and fatty acid profiles were observed to vary with variations in growth temperatures and culture media. C. sorokiniana-I showed tolerance to higher temperatures along with significant alterations in the fatty acid profiles. When grown in wastewater, the indigenous C. sorokiniana-I has efficiently removed TN (77%), TP (81%), Fe (67%), Ca (42%), and reduced the chemical oxygen demand (COD) and biological oxygen demand (BOD) and alkalinity by 48%, 47%, 15%, respectively from it. C. sorokiniana-I thrives well at continuous temperatures of 37°C and 40°C and accumulated about 52% higher lipid and two fold higher FAME using wastewater when compared to commercial medium tris acetate phosphate (TAP), which makes it amenable for economic biodiesel feedstock production coupled with remediation of the wastewater.
1429
77290
Evidence of Pesticide Detoxification in the Grain Aphid Sitobion avenae
Abstract:
There are a number of mechanisms by which insects may become resistant to insecticides including behavioural resistance, penetration resistance, metabolic resistance and altered target site resistance where the target site in the insect becomes altered to reduce the effect of the insecticide. Target site resistance has been implicated in the expression of knock down resistance to pyrethroid compounds in the grain aphid Sitobion avenae (Fabricius), yet differences in mobility and survival were observed under laboratory conditions in aphids exposed to a pyrethroid compound. This study set out to establish if metabolic mechanisms involved in pesticide detoxification may be influencing grain aphid survival. A vial assay was used to compare the effect of the full field rate of lambda-cyhalothrin, a pyrethroid compound, with and without the addition of a synergist Piperonyl Butoxide known to inhibit enzyme activity. Results indicate a significant difference in insecticide effect with the addition of the synergist in some grain aphids. This finding provides evidence that pesticide detoxification through the metabolism of the pyrethroid compound may be implicated in grain aphid survival conferring an additional mechanism of resistance. This provides useful prospects for the control of grain aphids in cereal crops.
1428
77289
Anaerobic Digestion Batch Study of Taxonomic Variations in Microbial Communities during Adaptation of Consortium to Different Lignocellulosic Substrates Using Targeted Sequencing
Abstract:
Anaerobic digestion has been widely used for production of methane from different biowastes. However, the complexity of microbial communities involved in the process is poorly understood. The performance of biogas production process concerning the process productivity is closely coupled to its microbial community structure and syntrophic interactions amongst the community members. The present study aims at understanding taxonomic variations occurring in any starter inoculum when acclimatised to different lignocellulosic biomass (LBM) feedstocks relating to time of digestion. The work underlines use of high throughput Next Generation Sequencing (NGS) for validating the changes in taxonomic patterns of microbial communities. Biomethane Potential (BMP) batches were set up with different pretreated and non-pretreated LBM residues using the same microbial consortium and samples were withdrawn for studying the changes in microbial community in terms of its structure and predominance with respect to changes in metabolic profile of the process. DNA of samples withdrawn at different time intervals with reference to performance changes of the digestion process, was extracted followed by its 16S rRNA amplicon sequencing analysis using Illumina Platform. Biomethane potential and substrate consumption was monitored using Gas Chromatography(GC) and reduction in COD (Chemical Oxygen Demand) respectively. Taxonomic analysis by QIIME server data revealed that microbial community structure changes with different substrates as well as at different time intervals. It was observed that biomethane potential of each substrate was relatively similar but, the time required for substrate utilization and its conversion to biomethane was different for different substrates. This could be attributed to the nature of substrate and consequently the discrepancy between the dominance of microbial communities with regards to different substrate and at different phases of anaerobic digestion process. Knowledge of microbial communities involved would allow a rational substrate specific consortium design which will help to reduce consortium adaptation period and enhance the substrate utilisation resulting in improved efficacy of biogas process.
1427
77284
Isolation and Molecular Characterization of Lytic Bacteriophage against Carbapenem Resistant Klebsiella pneumoniae
Abstract:
Introduction: Klebsiella pneumoniae is a well-known opportunistic human pathogen, primarily causing healthcare-associated infections. The global emergence of carbapenemase-producing K. pneumoniaeis a major public health burden, which is often extensively multidrug resistant.Thus, because of the difficulty to treat these ‘superbug’ and menace and some term as ‘apocalypse’ of post antibiotics era, an alternative approach to controlling this pathogen is prudent and one of the approaches is phage mediated control and/or treatment. Objective: In this study, we aimed to isolate novel bacteriophage against carbapenemase-producing K. pneumoniaeand characterize for potential use inphage therapy. Material and Methods: Twenty lytic phages were isolated from river water using double layer agar assay and purified. Biological features, physiochemical characters, burst size, host specificity and activity spectrum of phages were determined. One most potent phage: Phage TU_Kle10O was selected and characterized by electron microscopy. Whole genome sequences of the phage were analyzed for presence/absence of virulent factors, and other lysin genes. Results: Novel phage TU_Kle10O showed multiple host range within own genus and did not induce any BIM up to 5th generation of host’s life cycle. Electron microscopy confirmed that the phage was tailed and belonged to Caudovirales family. Next generation sequencing revealed its genome to be 166.2 Kb. bioinformatical analysis further confirmed that the phage genome ‘did not’ contain any ‘bacterial genes’ within phage genome, which ruled out the concern for transfer of virulent genes. Specific 'lysin’ enzyme was identified phages which could be used as 'antibiotics'. Conclusion: Extensively multidrug resistant bacteria like carbapenemase-producing K. pneumoniaecould be treated efficiently by phages.Absence of ‘virulent’ genes of bacterial origin and presence of lysin proteins within phage genome makes phages an excellent candidate for therapeutics.
1426
77282
Expression of Somatostatin and Neuropeptide Y in Dorsal Root Ganglia Following Hind Paw Incision in Rats
Abstract:
Background: Somatostatin is an endogenous regulatory neuropeptide. Somatostatin and its analogues play an important role in neuropathic and inflammatory pain. Neuropeptide Y is extensively distributed in the mammalian nervous system. NPY has an important role in blood pressure, circadian rhythm, obesity, appetite and memory. The purpose was to investigate somatostatin and NPY expression in dorsal root ganglia during pain. The plantar incision model in rats is similar to postoperative pain in humans. Methods: 24 adult male Sprague dawley rats were distributed randomly into two groups – Control (n=6) and incision (n=18) groups. Using Hargreaves apparatus, thermal hyperalgesia behavioural test for nociception was done under basal condition and after surgical incision in right hind paw at different time periods (day 1, 3 and 5). The plantar incision was performed as per standard protocol. Perfusion was done using 4% paraformaldehyde followed by extraction of dorsal root ganglia at L4 level. The tissue was processed for immunohistochemical localisation for somatostatin and neuropeptide Y. Results: Post incisional groups (day 1, 3 and 5) exhibited significant decrease of paw withdrawal latency as compared to control groups. Somatostatin expression was noted under basal conditions. It decreased on day 1, but again gradually increased on day 3 and further on day five post incision. The expression of Neuropeptide Y was noted in the cytoplasm of dorsal root ganglia under basal conditions. Compared to control group, expression of neuropeptide Y decreased on day one after incision, but again gradually increased on day 3. Maximum expression was noted on day five post incision. Conclusion: Decrease in paw withdrawal latency indicated nociception, particularly on day 1. In comparison to control, somatostatin and NPY expression was decreased on day one post incision. This could be correlated with increased axoplasmic flow towards the spinal cord. Somatostatin and NPY expression was maximum on day five post incision. This could be due to decreased migration from the site of synthesis towards the spinal cord.
1425
77254
Genome Sequencing of Infectious Bronchitis Virus QX-Like Strain Isolated in Malaysia
Abstract:
Respiratory diseases are the most important infectious diseases affecting poultry worldwide. One of the avian respiratory virus of global importance causing significant economic losses is Infectious Bronchitis Virus (IBV). The virus causes a wide spectrum disease known as Infectious Bronchitis (IB), affecting not only the respiratory system but also the kidney and the reproductive system, depending on its strain. IB and Newcastle disease are two of the most prevalent diseases affecting poultry in Malaysia. However, a study on the molecular characterization of Malaysian IBV is lacking. In this study, an IBV strain IBS130 which was isolated in 2015 was fully sequenced using next-gene sequencing approach. Sequence analysis of IBS130 based on the complete genome, polyprotein 1ab and S1 genes were compared with other IBV sequences available in Genbank, National Center for Biotechnology Information (NCBI). IBV strain IBS130 is characterised as QX-like strain based on whole genome and S1 gene sequence analysis. Comparisons of the virus with other IBV strains showed that the nucleotide identity ranged from 67% to 99.2%, depending on the region analysed. The similarity in whole genome nucleotide ranging from 84.9% to 90.7% with the least similar was from Singapore strains (84.9%) and highly similar with China QX-like strains. Meanwhile, the similarity in polyprotein 1ab ranging from 85.3% to 89.9% with the least similar to Singapore strains (85.3%) and highly similar with Mass strains from USA.
1424
77219
Coagulase Negative Staphylococci: Phenotypic Characterization and Antimicrobial Susceptibility Pattern
Abstract:
Background: Coagulase negative staphylococci (CoNS) were long regarded non-pathogenic as they are the commensals of human skin and mucosa but the recent changes in the medical practice and changes in underlying host populations, they are being considered significant pathogens associated with number of nosocomial infections. Objectives: To determine species, antimicrobial susceptibility and surface adherence property of CoNS isolates and to compare three different methods for detection of biofilm formation. Methods: A total of 52 clinically significant CoNS isolates obtained from different units during a year period were studied. Characterization was done using standard microbiological guidelines, and antimicrobial susceptibility was done following CLSI guidelines.Biofilm formation was detected by using three methods i.e. tissue culture plate method, congo red agar method, and tube adherence method. Results: Among 52 isolates, S. epidermidis (52%) was the most common species which was followed by S. saprophyticus (18%) and S. haemolyticus (14%). Antimicrobial susceptibility pattern of CoNS documented resistance of 80% to ampicillin. Resistance to cefoxitin and ceftriaxone was observed in 58% of the isolates. Biofilm formation was observed in 67% of the isolates. The accuracy of Congo red agar and tube adherence method for the detection of biofilm formation was 82% and 76% respectively. Conclusion: CoNS are a significant cause of human infections. CoNS isolated from clinical samples should be processed routinely, and antimicrobial susceptibility testing should be performed. Multidrug-resistant CoNS are ever increasing. All the three methods i.e. tissue culture plate, Congo red agar and tube adherence method can be used in detecting biofilm formation.
1423
77202
Structural Investigation of the GAF Domain Protein BPSL2418 from Burkholderia pseudomallei
Abstract:
A new family of methionine-sulfoxide reductase (Msr) was recently discovered and was named free methionine sulfoxide reductase (fRMsr). This family includes enzymes with a reductase activity toward the free R isomer of a methionine sulfoxide substrate. The fRMsrs have a GAF domain topology, a domain, which was previously identified as having in some cases a cyclic nucleotide phosphodiesterase activity. The classification of fRMsrs as GAF domains revealed a new function can be added to the GAF domain family. Interestingly the four members identified in the fRMsr family share the GAF domain structure and the presence of three conserved cysteines in the active site with free R methionine sulfoxide substrate specificity. This thesis presents the crystal structures of reduced, free Met-SO substrate-bound and MES-bound forms of a new fRMsr from Burkholderia pseudomallei (BPSL2418). BPSL2418 was cloned, overexpressed and purified to enable protein crystallization. The crystallization trials for reduced, Met-SO-bound and MES-bound forms of BPSL2418 were prepared and reasonable crystals of each form were produced. The crystal structures of BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced were solved at 1.18, 1.4 and 2.0Å, respectively by molecular replacement. The BPSL2418MES crystal belongs to space group P 21 21 21 while BPSL2418Met-SO and BPSL2418Reduced crystals belong to space group P 1 21 1. All three forms share the GAF domain structure of six antiparallel β-strands and four α-helices with connecting loops. The antiparallel β-strands (β1, β2, β5 and β6) are located in the center of the BPSL2418 structure flanked on one side by a three α-helices (α1, α2 and α4) and on the other side by a (loop1, β3, loop2, α3, β4 loop4) unit where loop4 forms a capping flap and covers the active site. The structural comparison of the three forms of BPSL2418 indicates that the catalytically important cysteine is CYS109, where the resolving cysteine is CYS75, which forms a disulfide bond with CYS109. They also suggest that the third conserved cysteine in the active site, CYS85, which is located in α3, is a non-essential cysteine for the catalytic function but it may play a role in the binding of the substrate. The structural comparison of the three forms reveals that conformational changes appear in the active site particularly involving loop4 and CYS109 during catalysis. The 3D structure of BPSL2418 shows strong structure similarity to fRMsrs enzymes, which further suggests that BPSL2418 acts as a free Met-R-SO reductase and shares the catalytic mechanism of fRMsr family.
1422
77184
Bioefficacy of Novel Insecticide Flupyradifurone Sl 200 against Leaf Hoppers, Aphids and Whitefly in Cotton
Abstract:
Field experiments were conducted at Regional Agricultural Research Station, Lam, Guntur, Andhra Pradesh, India for two seasons during 2011-13 to evaluate the efficacy of flupyradifurone SL 200 a new class of insecticide in butenolide group against leaf hoppers, aphids and whitefly in Cotton. The test insecticide flupyradifurone 200 was evaluated at three doses @ 150, 200 and 250 g ai/ha ha along with imidacloprid 200 SL @ 20g ai/ha, acetamiprid 20 SP @ 20g ai/ha, thiamethoxam 25 WG @ 25g ai/ha and monocrotophos 36 SL @ 360 g ai/ha as standards. Flupyradifurone SL 200 even at lower dose of 150g ai/ha exhibited superior efficacy against cotton leafhopper, Amrasca devastans than the neonicotinoids which are widely used for control of sucking pests in cotton. Against cotton aphids, Aphis gossypii. Flupyradifurone SL 200 @ 200 and 250 g ai/ha ha was proved to be effective and the lower dose @ 150g ai/ha performed better than some of the neonicotinoids. The effect of flupyradifurone SL 200 on cotton against whitefly, Bemisia tabaci was evident at higher doses of 200 and 250 g ai/ha and superior to all standard treatments, however, the lower dose is at par with neonicotinoids. The seed cotton yield of flupyradifurone 200 SL at all the doses tested was superior than imidacloprid 200 SL @ 20g ai/ha and acetamiprid 20 SP @ 20g ai/ha. There is no significant difference among the insecticidal treatments with regards to natural enemies. The results clearly suggest that flupyradifurone is a new tool to combat sucking pest problems in cotton and can well fit in IRM strategies in light of wide spread insecticide resistance in cotton sucking pests.
1421
76995
Nitrate Reductase Assay for Drug Susceptibility Testing of Tuberculosis
Abstract:
Background: Emergence of multidrug-resistant tuberculosis is considered a serious threat to global tuberculosis control. Rapid detection of drug resistant tuberculosis by direct nitrate reductase assay aids in early diagnosis and effective treatment, particularly in low-income countries. The objective of this study was to evaluate the performance of Nitrate reductase assay (NRA) for direct detection of rifampicin and isoniazid resistance in tuberculosis. Methods: The study was conducted in the Department of Microbiology, BPKIHS, Nepal, from July 2013 to June 2014. A total of 58 new smear positive sputum samples were processed as per the standard guidelines. The performance of NRA was evaluated on Middlebrook 7H11 agar for detection of rifampicin and isoniazid resistance directly on smear positive sputum specimens, and the results were compared with conventional proportion method on Lowenstein Jensen medium. Results: The sensitivity of Nitrate reductase assay for detection of rifampicin resistance was 85.7%, and its specificity was 100%, whereas, sensitivity and specificity of isoniazid resistance were 87.5 % and 100% respectively. The mean days of drug susceptibility testing results were 19.3 days for NRA and 72 days for conventional proportion method. Around 83% of the samples gave positive results within 21 days. Conclusions: Direct NRA on Middlebrook 7H11 medium is highly sensitive and has the potential to be implemented for rapid detection of multidrug-resistant tuberculosis in laboratories with limited resources. It is a reliable, faster and easier method to perform drug susceptibility testing.
1420
76948
Palladium/Platinum Complexes of Tridentate 4-Acylpyrazolone Thiosemicarbazone with Antioxidant Properties
Abstract:
The need for the development of new sustainable bioactive compounds with unique properties that can become potential replacement for commonly used medicinal drugs has continued to gain tremendous research concerns because of the problems of disease resistant to these medicinal drugs and their toxicity effects. NOS-donor heterocycles are particularly of interest as they have showed good pharmacological activities in the midst of their interesting chelating properties towards metal ions, an important characteristic for transition metal based drugs design. These new compounds have also gained application as dye sensitizers in solar cell panels for the generation of renewable solar energy, as greener water purification polymer for supply and management of clean water and as catalysts which are used to reduce the amount of pollutants from industrial reaction processes amongst others, because of their versatile properties. Di-ketone acylpyrazolones and their azomethine schiff bases have been employed as pharmaceuticals as well as analytical reagents, and their application as transition metal complexes have being well established. In this research work, a new 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one-thiosemicarbazone was synthesized from the reaction of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one and thiosemicarbazide in methanol. The pure isolate of the thiosemicarbazone was further reacted with aqueous solutions of palladium and platinum salts to obtain their metal complexes, in an effort towards the discovery of transition metal based synthetic drugs. These compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group according to x-ray crystallography. The tridentate NOS ligand formed a tetrahedral geometry on coordinating with metal ions. Reported compounds showed varying antioxidant free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 100, 200, 300, 400 and 500 µg/ml concentrations. The platinum complex have shown a very good antioxidant property against DPPH with an IC50 of 76.03 µg/ml compared with standard ascorbic acid (IC50 of 74.66 µg/ml) and as such have been identified as a potential anticancer candidate.
1419
76807
The Effect of Mesenchymal Stem Cells on Full Thickness Skin Wound Healing in Albino Rats
Abstract:
Introduction: Wound healing involves the interaction of multiple biological processes among different types of cells, intercellular matrix and specific signaling factors producing enhancement of cell proliferation of the epidermis over dermal granulation tissue. Several studies investigated multiple strategies to promote wound healing and to minimize infection and fluid losses. However, burn crisis, and its related morbidity and mortality are still elevated. The aim of the present study was to examine the effects of mesenchymal stem cells (MSCs) in accelerating wound healing and to compare the most efficient route of administration of MSCs, either intradermal or systemic injection, with focusing on the mechanisms producing epidermal and dermal cell regeneration. Material and methods: Forty-two adult male Sprague Dawley albino rats were divided into three equal groups (fourteen rats in each group): control group (group I); full thickness surgical skin wound model, Group II: Wound treated with systemic injection of MSCs and Group III: Wound treated with intradermal injection of MSCs. The healing ulcer was examined on day 2, 6, 10 and 15 for gross morphological evaluation and on day 10 and 15 for fluorescent, histological and immunohistochemical studies. Results: The wounds of the control group did not reach complete closure up to the end of the experiment. In MSCs treated groups, better and faster healing of wounds were detected more than the control group. Moreover, the intradermal route of administration of stem cells increased the rate of healing of the wounds more than the systemic injection. In addition, the wounds were found completely healed by the end of the fifteenth day of the experiment in all rats of the group injected intradermally. Microscopically, the wound areas of group III were hardly distinguished from the adjacent normal skin with complete regeneration of all skin layers; epidermis, dermis, hypodermis and underlying muscle layer. Fully regenerated hair follicles and sebaceous glands in the dermis of the healed areas surrounded by different arrangement of collagen fibers with a significant increase in their area percent were recorded in this group more than in other groups. Conclusion: MSCs accelerate the healing process of wound closure. The route of administration of MSCs has a great influence on wound healing as intradermal injection of MSCs was more effective in enhancement of wound healing than systemic injection.
1418
76583
Towards the Development of Rapid Biofilm Antibiotic Sensitivity Testing
Abstract:
This study presents a modification of the antibiotic susceptibility testing (AST), which is a rapid means of determining the response of planktonic bacteria to different antimicrobial agents, for application to biofilms. Colony biofilm was first developed on a cellulose filter/membrane disc, over which an antibiotic disc was imposed. Zone of inhibition was measured after incubation on nutrient agar. Biofilms were not as susceptible to the test antibiotics as compared to the planktonic cultures. The results point to the possibility of this method as a rapid means for antibiotics for treating biofilm infections. Limitations and potential application for biofilm AST are discussed.
1417
76572
NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level
Abstract:
This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.
1416
76461
Distribution And Densities Of Anopheles Mosquito In El Obied Town, Sudan
Abstract:
Environmental and weather changes especially rainfall affects the distribution and densities of mosquitoes. This work was carried out to study the distribution and densities of mosquitoes adults and larvae in a total of five selected stations in El Obied Town. A cross-sectional survey of Anopheline mosquito larval habitats was conducted. The survey was conducted during the dry season (January 2013). Larvae were collected by using the standard dipping technique, while adult stages were collected by rearing larvae in cage, because the density of adults Anopheles mosquito per room was zero by using spray sheet method by using Permethrin pesticide 25%E.C, during the study period. The results revealed that (2347) Anopheline mosquito larvae were found and collected from only one station. All of which (2347) larvae (100%) were classified as probably Anopheles Squamosus. The study also showed that, a number of 81 adults (100%) Anopheline mosquito were classified as probably Anopheles Squamosus. Anopheles Squamosus were found only in the shallow pond water habitat in Alrahma west area of El Obied, the mean Anopheline density in the study area for larvae was 0.313 per dip while the mean density of adult was 0 per room. The high mosquito larval density in Alrahma west area indicated that, this part of El Obied Town is at risk of mosquito-borne diseases including malaria. This study recommended to apply the control program against mosquito at this part of the Town.
1415
76441
Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia
Abstract:
Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.
1414
76319
Balancing Biodiversity and Agriculture: A Broad-Scale Analysis of the Land Sparing/Land Sharing Trade-off for South African Birds
Abstract:
Modern agriculture has revolutionised the planet’s capacity to support humans, yet has simultaneously had a greater negative impact on biodiversity than any other human activity. Balancing the demand for food with the conservation of biodiversity is one of the most pressing issues of our time. Biodiversity-friendly farming (‘land sharing’), or alternatively, separation of conservation and production activities (‘land sparing’), are proposed as two strategies for mediating the trade-off between agriculture and biodiversity. However, there is much debate regarding the efficacy of each strategy, as this trade-off has typically been addressed by short term studies at fine spatial scales. These studies ignore processes that are relevant to biodiversity at larger scales, such as meta-population dynamics and landscape connectivity. Therefore, to better understand species response to agricultural land-use and provide evidence to underpin the planning of better production landscapes, we need to determine the merits of each strategy at larger scales. In South Africa, a remarkable citizen science project - the South African Bird Atlas Project 2 (SABAP2) – collates an extensive dataset describing the occurrence of birds at a 5-min by 5-min grid cell resolution. We use these data, along with fine-resolution data on agricultural land-use, to determine which strategy optimises the agriculture-biodiversity trade-off in a southern African context, and at a spatial scale never considered before. To empirically test this trade-off, we model bird species population density, derived for each 5-min grid cell by Royle-Nicols single-species occupancy modelling, against both the amount and configuration of different types of agricultural production in the same 5-min grid cell. In using both production amount and configuration, we can show not only how species population densities react to changes in yield, but also describe the production landscape patterns most conducive to conservation. Furthermore, the extent of both the SABAP2 and land-cover datasets allows us to test this trade-off across multiple regions to determine if bird populations respond in a consistent way and whether results can be extrapolated to other landscapes. We tested the land sparing/sharing trade-off for 281 bird species across three different biomes in South Africa. Overall, a higher proportion of species are classified as losers, and would benefit from land sparing. However, this proportion of loser-sparers is not consistent and varies across biomes and the different types of agricultural production. This is most likely because of differences in the intensity of agricultural land-use and the interactions between the differing types of natural vegetation and agriculture. Interestingly, we observe a higher number of species that benefit from agriculture than anticipated, suggesting that agriculture is a legitimate resource for certain bird species. Our results support those seen at smaller scales and across vastly different agricultural systems, that land sparing benefits the most species. However, our analysis suggests that land sparing needs to be implemented at spatial scales much larger than previously considered. Species persistence in agricultural landscapes will require the conservation of large tracts of land, and is an important consideration in developing countries, which are undergoing rapid agricultural development.
1413
76317
Inconsistent Effects of Landscape Heterogeneity on Animal Diversity in an Agricultural Mosaic: A Multi-Scale and Multi-Taxon Investigation
Abstract:
A key challenge for the developing world is reconciling biodiversity conservation with the growing demand for food. In these regions, agriculture is typically interspersed among other land-uses creating heterogeneous landscapes. A primary hypothesis for promoting biodiversity in agricultural landscapes is the habitat heterogeneity hypothesis. While there is evidence that landscape heterogeneity positively influences biodiversity, the application of this hypothesis is hindered by a need to determine which components of landscape heterogeneity drive these effects and at what spatial scale(s). Additionally, whether diverse taxonomic groups are similarly affected is central for determining the applicability of this hypothesis as a general conservation strategy in agricultural mosaics. Two major components of landscape heterogeneity are compositional and configurational heterogeneity. Disentangling the roles of each component is important for biodiversity conservation because each represents different mechanisms underpinning variation in biodiversity. We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an extensive agricultural mosaic in north-eastern Swaziland. We then tested how bird, dung beetle, ant and meso-carnivore diversity responded to compositional and configurational heterogeneity across six different spatial scales. To determine if a general trend could be observed across multiple taxa, we also tested which component and spatial scale was most influential across all taxonomic groups combined, Compositional, not configurational, heterogeneity explained diversity in each taxonomic group, with the exception of meso-carnivores. Bird and ant diversity was positively correlated with compositional heterogeneity at fine spatial scales < 1000 m, whilst dung beetle diversity was negatively correlated to compositional heterogeneity at broader spatial scales > 1500 m. Importantly, because of these contrasting effects across taxa, there was no effect of either component of heterogeneity on the combined taxonomic diversity at any spatial scale. The contrasting responses across taxonomic groups exemplify the difficulty in implementing effective conservation strategies that meet the requirements of diverse taxa. To promote diverse communities across a range of taxa, conservation strategies must be multi-scaled and may involve different strategies at varying scales to offset the contrasting influences of compositional heterogeneity. A diversity of strategies are likely key to conserving biodiversity in agricultural mosaics, and we have demonstrated that a landscape management strategy that only manages for heterogeneity at one particular scale will likely fall short of management objectives.
1412
76197
Shrinking Domestic Chickens Leads to Increased Genomic Diversity and Evolution of Genotypes
Abstract:
Since domestication, chickens (Gallus gallus domesticus) have experienced intensive anthropomorphic evolution and selection. In the Netherlands, bantamized variants have, over the past few decades, become popular alternatives to large fowls of traditional breeds, because they are easily housed in a hobby setting. Making these new bantam breeds is done by crossing a large breed with a small chicken breed, with subsequent selection to retain the exterior phenotype of the large donor breed and the small size of the bantam donor breed. However, while backcrossing for phenotype selection is threatening the long-term existence and genetic makeup of most neo-bantams, genetic exchange between breeders may also generate genetic diversity in these new breeds. In this study, high-density SNP arrays were used to characterize the genetic diversity and demographic history of 37 traditional Dutch chicken breeds, comprising large fowls (n=17 breeds), true bantams (n=4), and neo-bantams (n=16). In particular, genetic relationship, admixture patterns, and level of inbreeding of neo-bantams were investigated to assess their contribution to the national chicken genetic diversity. Large fowls and neo-bantams showed slightly similar polymorphism, though neo-bantams were the most inbred of the traditional breeds. Principal component analysis (PCA) and distance-based neighbor-joining (NJ) tree revealed high genotypic similarities between large fowls and neo-bantams while identifying signatures of recent genetic introgression during neo-bantams development. Population admixture analysis supported these findings, along with revealing ongoing changes in the bantamising trend of most neo-bantams. Traditional breeds showed remarkable variation in the run of homozygosity (ROH) profile, which was characterized by a low number of long homozygous segments. Despite that, long ROHs covered a significant proportion of the genome, particularly of neo-bantams. The genetic variation we observed within breeds is explained by the metapopulation structure comprising small farmer-based breeding units, whose genetic diversity is strongly influenced by breeding practices and selection preferences of individual breeders and breed associations. Results show that a small flock size and gene flow of varying extent have divergent consequences on the genetic diversity of large fowls and neo-bantams. We observed that the bantamising trend has changed over time towards an increased development of new phenotypes or breeder’s decision to establish new small size varieties. We showed that extensive gene flow contributes to the neo-bantams genetic diversity. However, sequential backcrossing derived from the lack of information of the degree of recent inbreeding. Hence, rapid genetic changes are expected to particularly affect neo-bantams, due to their smaller founder size and unstructured selection for morphological standards. The present study confirms the importance of using genotype data to inform genetic management and conservation priority of traditional breeds to preserve genetic diversity. We conclude that neo-bantams are reservoirs of emerging quantitative traits and phenotypes, suggesting that the bantamising breeding strategy can generate and maintain genetic diversity. However, such exceptional diversity can be preserved in the near future only with proper genetic information and structured breeding programmes.
1411
76033
Risk Perception of Coastal Communities and Authorities on Harmful Algal Blooms in Ecuador
Abstract:
The ocean is intrinsically linked to human health as it provides food and wellbeing, yet shifts in its dynamics can pose climate-ecological risks, such as harmful algal blooms (HABs) that can impact the health and the economy of coastal communities. For decades, Ecuadorian coastal communities have witnessed seasonal algal blooms, events that are driven by factors including complex ocean-climate interactions, nutrient availability, and ecological variables. However, little is known about the risk perceived by coastal populations regarding such events. This study assessed the knowledge, attitudes, and practices of fishermen, restaurant owners, and coastal authorities in relation to harmful algal blooms, or ‘red tide’ events, in coastal Ecuador. Methods utilized in this study include a nonprobabilistic sampling approach for the two studied populations: coastal communities comprised of fishermen and restaurant owners (N1=181), and authorities comprised of coastal officials in the sectors of health, and environment and risk management (N2=20). Using contingency tables, chi-square test, Cramer’s V correlation statistic, and multiple correspondence analysis, this study compared the responses of these two groups, coastal communities and authorities, to determine whether principal activity, or livelihood, affected risk perception in each group. This project implemented four workshops to interact with coastal stakeholders and more deeply understand risk perception within studied populations. Results demonstrated that principal activity indeed influenced risk perception of red tides, and that fishermen, restaurant owners, and health authorities had limited knowledge and low risk perception of red tide impacts on human health. Recommendations produced from this research include tailored workshops and improved communication between authorities and coastal communities to enhance algal bloom monitoring and coastal management during future red tide events
1410
75989
On the Experience of Wrapping Beagle Puppy for Octave
Abstract:
Open Beagle is a widely acclaimed framework for evolutionary computing. A miniature version of it is Beagle Puppy. Puppy allows running genetic programming (GP). Moreover, given its small code, it is amenable for learning about the implementation of a typical GP system. Both Open Beagle and Beagle Puppy are written in C++. In the past, we translated Puppy to Java. In this paper, we report our experience of wrapping Beagle puppy for Octave. Octave is a high-level scripting environment that is particularly suitable for scientific computations. In wrapping Puppy for Octave, our hope was to retain the computational efficiency of Java, while making the erstwhile mentioned GP system more user-friendly.
1409
75919
Genome-Wide Identification and Characterization of MLO Family Genes in Pumpkin (Cucurbita maxima Duch)
Abstract:
Mildew resistance locus o (Mlo), a plant-specific gene family with seven-transmembrane (TM), plays an important role in plant resistance to powdery mildew (PM). PM caused by Podosphaera xanthii is a widespread plant disease and probably represents the major fungal threat for many Cucurbits. The recent Cucurbita maxima genome sequence data provides an opportunity to identify and characterize the MLO gene family in this species. Total twenty genes (designated CmaMLO1 through CmaMLO20) have been identified by using an in silico cloning method with the MLO gene sequences of Cucumis sativus, Cucumis melo, Citrullus lanatus and Cucurbita pepo as probes. These CmaMLOs were evenly distributed on 15 chromosomes of 20 C. maxima chromosomes without any obvious clustering. Multiple sequence alignment showed that the common structural features of MLO gene family, such as TM domains, a calmodulin-binding domain and 30 important amino acid residues for MLO function, were well conserved. Phylogenetic analysis of the CmaMLO genes and other plant species reveals seven different clades (I through VII) and only clade IV is specific to monocots (rice, barley, and wheat). Phylogenetic and structural analyses provided preliminary evidence that five genes belonged to clade V could be the susceptibility genes which may play the importance role in PM resistance. This study is the first comprehensive report on MLO genes in C. maxima to our knowledge. These findings will facilitate the functional analysis of the MLOs related to PM susceptibility and are valuable resources for the development of disease resistance in pumpkin.
1408
75883
Bile Salt Induced Microstructural Changes of Gemini Surfactant Micelles
Abstract:
Microstructural evolution of a cationic gemini surfactant 12-4-12 micelles in the presence of bile salts has been investigated using different techniques. A negative value of interaction parameter evaluated from surface tension measurements is a signature of strong synergistic interaction between oppositely charged surfactants. Both the bile salts compete with each other in inducing the micellar transition of 12-4-12 micelles depending on their hydrophobicity. Viscosity measurements disclose that loading of bile salts induces morphological changes in 12-4-12 micelles; sodium deoxycholate is more efficient in altering the aggregation behaviour of 12-4-12 micelles compared to sodium cholate and presents pronounced increase in viscosity and micellar growth which is suppressed at elevated temperatures. A remarkable growth of 12-4-12 micelles in the presence of sodium deoxycholate at low pH has been ascribed to the solubilization of bile acids formed in acidic medium. Small angle neutron scattering experiments provided size and shape of 12-4-12/bile salt mixed micelles are explicated on the basis of hydrophobicity of bile salts. The location of bile salts in micelle was determined from nuclear overhauser effect spectroscopy. The present study characterizes 12-4-12 gemini-bile salt mixed systems which significantly enriches our knowledge, and such a structural transition provides an opportunity to use these bioamphiphiles as delivery vehicles and in some pharmaceutical formulations.
1407
75782
Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels
Abstract:
Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P< 0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.
1406
75754
Mass Rearing and Effects of Gamma Irradiation on the Pupal Mortality and Reproduction of Citrus Leaf Miner Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae)
Abstract:
Citrus leaf miner (Phyllocnistis citrella Stainton) is native to Asia and one of the most serious pests of Iran’s citrus nursery stocks. In the present study, the possibility of insect mass rearing on four various citrus hosts and the effects of gamma irradiation on the pupal mortality and reproduction of this pest were studied. Trifoliate orange and grapefruit, showed less infection, while the number of pupae in Valencia oranges and Sweet lemons cages were so high. There were not any significant difference between weight of male and female pupae among different citrus hosts, but generally, the weight of male pupae was less than females. Use of Valencia orange or Sweet lemons seedlings in especial dark emergence and oviposition cages could be recommended for mass rearing of this pest. In this study, the effects of gamma radiation at doses 100 to 450 Gy on biological and reproductive parameters of the pest has been determined. The results show that Mean percent of pupal mortality increased with increasing doses and reached to 28.67% at 450 Gy for male pupae and 38.367% for female pupae. Also Mean values of this parameter were higher for irradiated female that indicated the higher sensitivity of this sex. The gamma ray irradiation from 200 and 300 Gy caused a decrease in male and female adult moth longevity respectively. The eggs were laid by emerged females and their hatchability was decreased by increasing gamma doses. The fecundity of females in both combinations of crosses (irradiated male × normal female and irradiated female × normal male) did not differ but the fertility of laid eggs by irradiated female × normal male affected seriously and the mean values of this parameter reached to zero at 300 Gy. The hatchability percentage of produced eggs by the normal female × irradiated male at 300 Gy was 23.29% and reached to less than 2% at 450 Gy as the highest tested dose. The results of this test show that females have more radio-sensitivity in comparison to males.
1405
75753
Efficacy of Gamma Radiation on the Productivity of Bactrocera oleae Gmelin (Diptera:Tephritidae)
Abstract:
The olive fruit fly, Bactrocera oleae Gmelin (Diptera: Tephritidae), is one of the most serious pest in olive orchards in growing province in Iran. The female lay eggs in green olive fruit and larvae hatch inside the fruit, where they feed upon the fruit matters. One of the main ecologically friendly and species-specific systems of pest control is the sterile insect technique (SIT) which based on the release of large numbers of sterilized insects. The objective of our work was to develop a Sterile Insect Technique against B. oleae by using of gamma radiation for the laboratory and field trial in Iran. Oviposition of female mated by irradiated males is one of the main parameters to determine achievement of SIT. To conclude the sterile dose, pupae were placed under 0 to 160 Gy of gamma radiation. The main factor in SIT is the productivity of females which mated by irradiated males. The emerged adults from irradiated pupae were mated with untreated adults of the same age by confining them inside the transparent cages. The fecundity of the irradiated males mated with non-irradiated females was decreased with the increasing radiation dose level. It was observed that the number of eggs and also the percentage of the egg hatching was significantly (P < 0.05) affected in either IM x NF crosses compared with NM x NF crosses in F1 generation at all doses. Also, the statistical analysis showed a significant difference (P < 0.05) in the mean number of eggs laid between irradiated and non-irradiated females crossed with irradiated males, which suggests that the males were susceptible to gamma radiation. The egg hatching percentage declined markedly with the increase of the radiation dose of the treated males in mating trials which demonstrated that egg hatch rate was dose dependent. Our results specified that gamma radiation affects the longevity of irradiated B. oleae larvae (established from irradiated pupae) and significantly increased their larval duration. Results show the gamma radiation and sterile insect technique can be used successfully against olive fruit flies.
1404
75747
Thermal Stabilisation of Poly(a)•Poly(U) by TMPyP4 and Zn(X)TMPyP4 Derivatives in Aqueous Solutions
Authors:
Abstract:
The duplex Poly(A)-Poly(U) denaturation in an aqueous solutions in mixtures with the tetracationic MeTMPyP4 (Me = 2H, Zn(II); TMPyP4 is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin), was investigated by monitoring the changes in the UV-Vis absorbance spectrum with increasing temperatures from 20°С to 70°С (рН 7.0, I=0.15M). The absorbance data matrices were analyzed with a versatile chemometric procedure that provides the melting profile (distribution of species) and the pure spectrum for each chemical species present along the heating experiment. As revealed by the increase of Tm, the duplex structure was stabilized by these porphyrins. The values of stabilization temperature ΔTm in the presence of these porphyrins are relatively large, 1.2-8.4 °C, indicating that the porphyrins contribute differently in stabilizing the duplex Poly(A)-Poly(U) structure. Remarkable is the fact that the porphyrin TMPyP4 was less effective in the stabilization of the duplex structure than the metalloporphyrin Zn(X)TMPyP4 which suggests that metallization play an important role in porphyrin-RNA binding. Molecular Dynamics Simulations has been used to illustrate melting of the duplex dsRNA bound with a porphyrin molecule.
1403
75702
RNA Antisense Coat Protein Showing Promising Effects against Cotton Leaf Curl Disease in Pakistani Cotton
Abstract:
Cotton Leaf Curl Disease (CLCuD) is from Gemini virus and is transmitted through whiteflies in cotton. Transgenic cotton containing Antisense Coat Protein (ACP) has been found to show better results against CLCuD in cotton. In current research, Antisense Coat Protein was inserted in cotton plants to observe resistance developed in the cotton plants against CLCuD. T1 generation of plants were observed for its expression in plants. Tests were carried out to observe the expression of Antisense Coat Protein using Polymerase Chain Reaction (PCR) technique and by southern blotting. Whiteflies showing positive Cotton Leaf Curl Virus (CLCV) were reared and released in bioassay on ACP expressing cotton plants under laboratory as well as confined semi-field conditions. Results confirmed the expression of AC protein in PCR and southern blotting. Further laboratory results showed that cotton plants expressing AC protein showed rare incidence of CLCuD infection as compared to control. In the confined semi-field, similar results were observed in AC protein expressing cotton as compared to control. These results explicitly show that ACP can help to tackle the CLCuD issue in the future and further studies on biochemical processes involved in these plants and effects of ACP induction on non-target organisms should also be studied for eco-system.
1402
75592
Morphology, Chromosome Numbers and Molecular Evidences of Three New Species of Begonia Section Baryandra (Begoniaceae) from Panay Island, Philippines
Abstract:
The flora of Panay Island is under-collected compared with the other islands of the Philippines. In a joint expedition to the island, botanists from Taiwan and the Philippines found three unknown Begonia and compared them with potentially allied species. The three species are clearly assignable to Begonia section Baryandra which is largely endemic to the Philippines. Studies of literature, herbarium specimens, and living plants support the recognition of the three new species: Begonia culasiensis, Begonia merrilliana, and Begonia sykakiengii. Somatic chromosomes at metaphase were determined to be 2n=30 for B. culasiensis and 2n=28 for both B. merrilliana and B. sykakiengii, which are congruent with those of most species in sect. Baryandra. Molecular phylogenetic evidence is consistent with B. culasiensis being a relict from the late Miocene, and with B. merrilliana and B. sykakiengii being younger species of Pleistocene origin. The continuing discovery of endemic Philippine species means the remaining fragments of both primary and secondary native vegetation in the archipelago are of increasing value in terms of natural capital. A secure future for the species could be realized through ex-situ conservation collections and raising awareness with community groups.