Scholarly Research Excellence

Digital Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Abstract Count: 55954

Civil and Architectural Engineering

78
99772
Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm
Abstract:
In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling.
77
97800
InSAR Times-Series Phase Unwrapping for Urban Areas
Abstract:
The analysis of multi-temporal InSAR (MTInSAR) such as persistent scatterer (PS) and small baseline subset (SBAS) techniques usually relies on temporal/spatial phase unwrapping (PU). Unfortunately, it always fails to unwrap the phase for two reasons: 1) spatial phase jump between adjacent pixels larger than π, such as layover and high discontinuous terrain; 2) temporal phase discontinuities such as time varied atmospheric delay. To overcome these limitations, a least-square based PU method is introduced in this paper, which incorporates baseline-combination interferograms and adjacent phase gradient network. Firstly, permanent scatterers (PS) are selected for study. Starting with the linear baseline-combination method, we obtain equivalent 'small baseline inteferograms' to limit the spatial phase difference. Then, phase different has been conducted between connected PSs (connected by a specific networking rule) to suppress the spatial correlated phase errors such as atmospheric artifact. After that, interval phase difference along arcs can be computed by least square method and followed by an outlier detector to remove the arcs with phase ambiguities. Then, the unwrapped phase can be obtained by spatial integration. The proposed method is tested on real data of TerraSAR-X, and the results are also compared with the ones obtained by StaMPS(a software package with 3D PU capabilities). By comparison, it shows that the proposed method can successfully unwrap the interferograms in urban areas even when high discontinuities exist, while StaMPS fails. At last, precise DEM errors can be got according to the unwrapped interferograms.
76
95803
Geospatial Curve Fitting Methods for Disease Mapping of Tuberculosis in Eastern Cape Province, South Africa
Abstract:
To interpolate scattered or regularly distributed data, there are imprecise or exact methods. However, there are some of these methods that could be used for interpolating data in a regular grid and others in an irregular grid. In spatial epidemiology, it is important to examine how a disease prevalence rates are distributed in space, and how they relate with each other within a defined distance and direction. In this study, for the geographic and graphic representation of the disease prevalence, linear and biharmonic spline methods were implemented in MATLAB, and used to identify, localize and compare for smoothing in the distribution patterns of tuberculosis (TB) in Eastern Cape Province. The aim of this study is to produce a more “smooth” graphical disease map for TB prevalence patterns by a 3-D curve fitting techniques, especially the biharmonic splines that can suppress noise easily, by seeking a least-squares fit rather than exact interpolation. The datasets are represented generally as a 3D or XYZ triplets, where X and Y are the spatial coordinates and Z is the variable of interest and in this case, TB counts in the province. This smoothing spline is a method of fitting a smooth curve to a set of noisy observations using a spline function, and it has also become the conventional method for its high precision, simplicity and flexibility. Surface and contour plots are produced for the TB prevalence at the provincial level for 2012 – 2015. From the results, the general outlook of all the fittings showed a systematic pattern in the distribution of TB cases in the province and this is consistent with some spatial statistical analyses carried out in the province. This new method is rarely used in disease mapping applications, but it has a superior advantage to be assessed at subjective locations rather than only on a rectangular grid as seen in most traditional GIS methods of geospatial analyses.
75
94105
Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping
Abstract:
Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.
74
92770
Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone
Abstract:
In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
73
92768
Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning
Abstract:
The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.
72
91555
Spatial Analysis in the Impact of Aquifer Capacity Reduction on Land Subsidence Rate in Semarang City between 2014-2017
Abstract:
The phenomenon of the lack of clean water supply in several big cities in Indonesia is a major problem in the development of urban areas. Moreover, in the city of Semarang, the population density and growth of physical development is very high. Continuous and large amounts of underground water (aquifer) exposure can result in a drastically aquifer supply declining in year by year. Especially, the intensity of aquifer use in the fulfilment of household needs and industrial activities. This is worsening by the land subsidence phenomenon in some areas in the Semarang city. Therefore, special research is needed to know the spatial correlation of the impact of decreasing aquifer capacity on the land subsidence phenomenon. This is necessary to give approve that the occurrence of land subsidence can be caused by loss of balance of pressure on below the land surface. One method to observe the correlation pattern between the two phenomena is the application of remote sensing technology based on radar and optical satellites. Implementation of Differential Interferometric Synthetic Aperture Radar (DINSAR) or Small Baseline Area Subset (SBAS) method in SENTINEL-1A satellite image acquisition in 2014-2017 period will give a proper pattern of land subsidence. These results will be spatially correlated with the aquifer-declining pattern in the same time period. Utilization of survey results to 8 monitoring wells with depth in above 100 m to observe the multi-temporal pattern of aquifer change capacity. In addition, the pattern of aquifer capacity will be validated with 2 underground water cavity maps from observation of ministries of energy and natural resources (ESDM) in Semarang city. Spatial correlation studies will be conducted on the pattern of land subsidence and aquifer capacity using overlapping and statistical methods. The results of this correlation will show how big the correlation of decrease in underground water capacity in influencing the distribution and intensity of land subsidence in Semarang city. In addition, the results of this study will also be analyzed based on geological aspects related to hydrogeological parameters, soil types, aquifer species and geological structures. The results of this study will be a correlation map of the aquifer capacity on the decrease in the face of the land in the city of Semarang within the period 2014-2017. So hopefully the results can help the authorities in spatial planning and the city of Semarang in the future.
71
91043
The Impacts of Land Use Change and Extreme Precipitation Events on Ecosystem Services
Authors:
Abstract:
Urban areas contain abundant potential biochemical storages and renewable and non-renewable flows. Urban natural environments for breeding natural assets and urban economic development for maintaining urban functions can be analyzed form the concept of ecological economic system. Land use change and ecosystem services change are resulting from the interactions between human activities and environments factually. Land use change due to human activities is the major cause of climate change, leading to serious impacts on urban ecosystem services, including provisioning services, regulating services, cultural services and supporting services. However, it lacks discussion on the interactions among urban land use change, ecosystem services change, and extreme precipitation events. Energy synthesis can use the same measure standard unit, solar energy, for different energy resources (e.g. sunlight, water, fossil fuels, minerals, etc.) and analyze contributions of various natural environmental resources on human economic systems. Therefore, this research adopts the concept of ecological, economic systems and energy synthesis for analyzing dynamic spatial impacts of land use change on ecosystem services, using the Taipei area as a case study. The analysis results show that changes in land use in the Taipei area, especially the conversion of natural lands and agricultural lands to urban lands, affect the ecosystem services negatively. These negative effects become more significant during the extreme precipitation events.
70
90271
Road Maintenance Management Decision System Using Multi-Criteria and Geographical Information System for Takoradi Roads, Ghana
Abstract:
The road maintenance backlogs created as a result of deferred maintenance especially in developing countries has caused considerable deterioration of many road assets. This is usually due to difficulties encountered in selecting and prioritising maintainable roads based on objective criteria rather than some political or other less important criteria. In order to ensure judicious use of limited resources for road maintenance, five factors were identified as the most important criteria for road management within the study area. This was based on the judgements of 40 experts. The results were further used to develop weightings using the Multi-Criteria Decision Process (MCDP) to analyse and select road alternatives according to maintenance goal. Using Geographical Information Systems (GIS), maintainable roads were grouped using the Jenk’s natural breaks to allow for further prioritised in order of importance for display on a dashboard of maps, charts, and tables. This reduces the problems of subjective maintenance and road selections, thereby reducing wastage of resources and easing the maintenance process through an object organised spatial decision support system.
69
89777
Comparative Analysis of Change in Vegetation in Four Districts of Punjab through Satellite Imagery, Land Use Statistics and Machine Learning
Abstract:
For many countries agriculture is still the major force driving the economy and a critically important socioeconomic sector, despite exceptional industrial development across the globe. In countries like Pakistan, this sector is considered the backbone of the economy, and most of the economic decision making revolves around agricultural outputs and data. Timely and accurate facts and figures about this vital sector hold immense significance and have serious implications for the long-term development of the economy. Therefore, any significant improvements in the statistics and other forms of data regarding agriculture sector are considered important by all policymakers. This is especially true for decision making for the betterment of crops and the agriculture sector in general. Provincial and federal agricultural departments collect data for all cash and non-cash crops and the sector, in general, every year. Traditional data collection for such a large sector i.e. agriculture, being time-consuming, prone to human error and labor-intensive, is slowly but gradually being replaced by remote sensing techniques. For this study, remotely sensed data were used for change detection (machine learning, supervised & unsupervised classification) to assess the increase or decrease in area under agriculture over the last fifteen years due to urbanization. Detailed Landsat Images for the selected agricultural districts were acquired for the year 2000 and compared to images of the same area acquired for the year 2016. Observed differences validated through detailed analysis of the areas show that there was a considerable decrease in vegetation during the last fifteen years in four major agricultural districts of the Punjab province due to urbanization (housing societies).
68
89000
Spectral Mixture Model Applied to Cannabis Parcel Determination
Abstract:
Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.
67
88822
Remote Sensing and GIS Based Methodology for Identification of Low Crop Productivity in Gautam Buddha Nagar District
Abstract:
Poor crop productivity in salt-affected environment in the country is due to insufficient and untimely canal supply to agricultural land and inefficient field water management practices. This could further degrade due to inadequate maintenance of canal network, ongoing secondary soil salinization and waterlogging, worsening of groundwater quality. Large patches of low productivity in irrigation commands are occurring due to waterlogging and salt-affected soil, particularly in the scarcity rainfall year. Satellite remote sensing has been used for mapping of areas of low crop productivity, waterlogging and salt in irrigation commands. The spatial results obtained for these problems so far are less reliable for further use due to rapid change in soil quality parameters over the years. The existing spatial databases of canal network and flow data, groundwater quality and salt-affected soil were obtained from the central and state line departments/agencies and were integrated with GIS. Therefore, an integrated methodology based on remote sensing and GIS has been developed in ArcGIS environment on the basis of canal supply status, groundwater quality, salt-affected soils, and satellite-derived vegetation index (NDVI), salinity index (NDSI) and waterlogging index (NSWI). This methodology was tested for identification and delineation of area of low productivity in the Gautam Buddha Nagar district (Uttar Pradesh). It was found that the area affected by this problem lies mainly in Dankaur and Jewar blocks of the district. The problem area was verified with ground data and was found to be approximately 78% accurate. The methodology has potential to be used in other irrigation commands in the country to obtain reliable spatial data on low crop productivity.
66
88688
Land Subsidence Monitoring in Semarang and Demak Coastal Area Using Persistent Scatterer Interferometric Synthetic Aperture Radar
Abstract:
Land subsidence is one of the problems that occur in the coastal areas of Java Island, one of which is the Semarang and Demak areas located in the northern region of Central Java. The impact of sea erosion, rising sea levels, soil structure vulnerable and economic development activities led to both these areas often occurs on land subsidence. To know how much land subsidence that occurred in the region needs to do the monitoring carried out by remote sensing methods such as PS-InSAR method. PS-InSAR is a remote sensing technique that is the development of the DInSAR method that can monitor the movement of the ground surface that allows users to perform regular measurements and monitoring of fixed objects on the surface of the earth. PS InSAR processing is done using Standford Method of Persistent Scatterers (StaMPS). Same as the recent analysis technique, Persistent Scatterer (PS) InSAR addresses both the decorrelation and atmospheric problems of conventional InSAR. StaMPS identify and extract the deformation signal even in the absence of bright scatterers. StaMPS is also applicable in areas undergoing non-steady deformation, with no prior knowledge of the variations in deformation rate. In addition, this method can also cover a large area so that the decline in the face of the land can cover all coastal areas of Semarang and Demak. From the PS-InSAR method can be known the impact on the existing area in Semarang and Demak region per year. The PS-InSAR results will also be compared with the GPS monitoring data to determine the difference in land decline that occurs between the two methods. By utilizing remote sensing methods such as PS-InSAR method, it is hoped that the PS-InSAR method can be utilized in monitoring the land subsidence and can assist other survey methods such as GPS surveys and the results can be used in policy determination in the affected coastal areas of Semarang and Demak.
65
88259
E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging
Abstract:
A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.
64
87961
Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley
Abstract:
The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.
63
87792
Spatial Planning Model on Landslide Risk Disaster at West Java Geothermal Field, Indonesia
Abstract:
Geographically, Indonesia is located in the arc of volcanoes that cause disaster prone one of them is landslide disaster. One of the causes of the landslide is the conversion of land from forest to agricultural land in upland areas and river border that has a steep slope. The study area is located in the highlands with fertile soil conditions, so most of the land is used as agricultural land and plantations. Land use transfer also occurs around the geothermal field in Pangalengan District, West Java Province which will threaten the sustainability of geothermal energy utilization and the safety of the community. The purpose of this research is to arrange the concept of spatial pattern arrangement in the geothermal area based on disaster mitigation. This research method using superimpose analysis. Superimpose analysis to know the basic physical condition of the planned area through the overlay of disaster risk map with the map of the plan of spatial plan pattern of Bandung Regency Spatial Plan. The results of the analysis will then be analyzed spatially. The results have shown that most of the study areas were at moderate risk level. Planning of spatial pattern of existing study area has not fully considering the spread of disaster risk that there are settlement area and the agricultural area which is in high landslide risk area. The concept of the arrangement of the spatial pattern of the study area will use zoning system which is divided into three zones namely core zone, buffer zone and development zone.
62
87265
The Cartometric-Geographical Analysis of Ivane Javakhishvili 1922: The Map of the Republic of Georgia
Abstract:
The study revealed the territorial changes of Georgia before the Soviet and Post-Soviet periods. This includes the estimation of the country's borders, its administrative-territorial arrangement change as well as the establishment of territorial losses. Georgia’s old and new borders marked on the map are of great interest. The new boundary shows the condition of 1922 year, following the Soviet period. Neither on this map nor in other works Ivane Javakhishvili talks about what he implies in the old borders, though it is evident that this is the Pre-Soviet boundary until 1921 – i.e., before the period when historical Tao, Zaqatala, Lore, Karaia represented the parts of Georgia. According to cartometric-geographical terms, the work presents detailed analysis of Georgia’s borders, along with this the comparison of research results has been carried out: 1) At the boundary line on Soviet topographic maps, the maps of 100,000; 50,000 and 25,000 scales are used; 2) According to Ivane Javakhishvili’s work ('The borders of Georgia in terms of historical and contemporary issues'). During that research, we used multi-disciplined methodology and software. We used Arc GIS for Georeferencing maps, and after that, we compare all post-Soviet Union maps, in order to determine how the borders have changed. During this work, we also use many historical data. The features of the spatial distribution of the territorial administrative units of Georgia, as well as the distribution of administrative-territorial units of the objects depicted on the map, have been established. The results obtained are presented in the forms of thematic maps and diagrams.
61
87137
Retrospective Cartography of Tbilisi and Surrounding Area
Abstract:
Tbilisi has been a capital of Georgia since the 5ᵗʰ century. City area was covered by forest in historical past. Nowadays the situation has been changing dramatically. Dozens of problems are caused by damages/destruction of green cover and solution, at one glance, seems to be uncomplicated (planting trees and creating green quarters), but on the other hand, according to the increasing tendency, the built up of areas still remains unsolved. Finding out the ways to overcome such obstacles is important even for protecting the health of society. Making of Retrospective cartography of the forest area of Tbilisi with use of GIS technology and remote sensing was the main aim of the research. Research about the dynamic of forest-cover in Tbilisi and its surroundings included the following steps: assessment of the dynamic of forest in Tbilisi and its surroundings. The survey was mainly based on the retrospective mapping method. Using of GIS technology, studying, comparing and identifying the narrative sources was the next step. And the last one was analyzed of the changes from the 80s to the present days on the basis of decryption of remotely sensed images. After creating a unified cartographic basis, the mapping and plans of different periods have been linked to this geodatabase. Data about green parks, individual old plants existing in the private yards and respondents' Information (according to a questionnaire created in advance) was added to the basic database, the general plan of Tbilisi and Scientific works as well. On the basis of analysis of historic, including cartographic sources, forest-cover maps for different periods of time were made. In addition, was made the catalog of individual green parks (location, area, typical composition, name and so on), which was the basis of creating several thematic maps. Areas with a high rate of green area degradation were identified. Several maps depicting the dynamics of forest cover of Tbilisi were created and analyzed. The methods of linking the data of the old cartographic sources to the modern basis were developed too, the result of which may be used in Urban Planning of Tbilisi. Understanding, perceiving and analyzing the real condition of green cover in Tbilisi and its problems, in turn, will help to take appropriate measures for the maintenance of ancient plants, to develop forests and to plan properly parks, squares, and recreational sites. Because the healthy environment is the main condition of human health and implies to the rational development of the city.
60
87098
Sentiment Mapping through Social Media and Its Implications
Abstract:
Being a habitat of the global village, every place has established connection through the strength and power of social media piercing through the political boundaries. Social media is a digital platform, where people across the world can interact as it has advantages of being universal, anonymous, easily accessible, indirect interaction, gathering and sharing information. The power of social media lies in the intensity of sharing extreme opinions or feelings, in contrast to the personal interactions which can be easily mapped in the form of Sentiment Mapping. The easy access to social networking sites such as Facebook, Twitter and blogs made unprecedented opportunities for citizens to voice their opinions loaded with dynamics of emotions. These further influence human thoughts where social media plays a very active role. A recent incident of public importance was selected as a case study to map the sentiments of people through Twitter. Understanding those dynamics through the eye of an ordinary people can be challenging. With the help of R-programming language and by the aid of GIS techniques sentiment maps has been produced. The emotions flowing worldwide in the form of tweets were extracted and analyzed. The number of tweets had diminished by 91 % from 25/08/2017 to 31/08/2017. A boom of sentiments emerged near the origin of the case, i.e., Delhi, Haryana and Punjab and the capital showed maximum influence resulting in spillover effect near Delhi. The trend of sentiments was prevailing more as neutral (45.37%), negative (28.6%) and positive (21.6%) after calculating the sentiment scores of the tweets. The result can be used to know the spatial distribution of digital penetration in India, where highest concentration lies in Mumbai and lowest in North East India and Jammu and Kashmir.
59
86983
Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data
Abstract:
For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.
58
85507
A Q-Methodology Approach for the Evaluation of Land Administration Mergers
Abstract:
The nature of Land administration accommodates diversity in terms of both spatial data handling activities and the expertise involved, which supposedly aims to satisfy the unpredictable demands of land data and the diverse demands of the customers arising from the land. However, it is known that strategic decisions of restructuring are in most cases repelled in favour of complex structures that strive to accommodate professional diversity and diverse roles in the field of Land administration. Yet despite of this widely accepted knowledge, there is scanty theoretical knowledge concerning the psychological methodologies that can extract the deeper perceptions from the diverse spatial expertise in order to explain the invisible control arm of the polarised reception of the ideas of change. This paper evaluates Q methodology in the context of a cadastre and land registry merger (under one agency) using the Swedish cadastral system as a case study. Precisely, the aim of this paper is to evaluate the effectiveness of Q methodology towards modelling the diverse psychological perceptions of spatial professionals who are in a widely contested decision of merging the cadastre and land registry components of Land administration using the Swedish cadastral system as a case study. An empirical approach that is prescribed by Q methodology starts with the concourse development, followed by the design of statements and q sort instrument, selection of the participants, the q-sorting exercise, factor extraction by PQMethod and finally narrative development by logic of abduction. The paper uses 36 statements developed from a dominant competing value theory that stands out on its reliability and validity, purposively selects 19 participants to do the Qsorting exercise, proceeds with factor extraction from the diversity using varimax rotation and judgemental rotation provided by PQMethod and effect the narrative construction using the logic abduction. The findings from the diverse perceptions from cadastral professionals in the merger decision of land registry and cadastre components in Sweden’s mapping agency (Lantmäteriet) shows that focus is rather inclined on the perfection of the relationship between the legal expertise and technical spatial expertise. There is much emphasis on tradition, loyalty and communication attributes which concern the organisation’s internal environment rather than innovation and market attributes that reveals customer behavior and needs arising from the changing humankind-land needs. It can be concluded that Q methodology offers effective tools that pursues a psychological approach for the evaluation and gradations of the decisions of strategic change through extracting the local perceptions of spatial expertise.
57
85064
Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring
Abstract:
Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.
56
84786
Tree-Based Inference for Regionalization: A Comparative Study of Global Topological Perturbation Methods
Abstract:
In this paper, a tree-based perturbation methodology for regionalization inference is presented. Regionalization is a constrained optimization problem that aims to create groups with similar attributes while satisfying spatial contiguity constraints. Similar to any constrained optimization problem, the spatial constraint may hinder convergence to some global minima, resulting in spatially contiguous members of a group with dissimilar attributes. This paper presents a general methodology for rigorously perturbing spatial constraints through the use of random spanning trees. The general framework presented can be used to quantify the effect of the spatial constraints in the overall regionalization result. We compare several types of stochastic spanning trees used in inference problems such as fuzzy regionalization and determining the number of regions. Performance of stochastic spanning trees is juxtaposed against the traditional permutation-based hypothesis testing frequently used in spatial statistics. Inference results for fuzzy regionalization and determining the number of regions is presented on the Local Area Personal Incomes for Texas Counties provided by the Bureau of Economic Analysis.
55
84664
Analysis and Performance of European Geostationary Navigation Overlay Service System in North of Algeria for GPS Single Point Positioning
Abstract:
The European Geostationary Navigation Overlay Service (EGNOS) provides an augmentation signal to GPS (Global Positioning System) single point positioning. Presently EGNOS provides data correction and integrity information using the GPS L1 (1575.42 MHz) frequency band. The main objective of this system is to provide a better real-time positioning precision than using GPS only. They are expected to be used with single-frequency code observations. EGNOS offers navigation performance for an open service (OS), in terms of precision and availability this performance gradually degrades as moving away from the service area. For accurate system performance, the service will become less and less available as the user moves away from the EGNOS service. The improvement in position solution is investigated using the two collocated dual frequency GPS, where no EGNOS Ranging and Integrity Monitoring Station (RIMS) exists. One of the pseudo-range was kept as GPS stand-alone and the other was corrected by EGNOS to estimate the planimetric and altimetric precision for different dates. It is found that precision in position improved significantly in the second due to EGNOS correction. The performance of EGNOS system in the north of Algeria is also investigated in terms of integrity. The results show that the horizontal protection level (HPL) value is below 18.25 meters (95%) and the vertical protection level (VPL) is below 42.22 meters (95 %). These results represent good integrity information transmitted by EGNOS for APV I service. This service is thus compliant with the aviation requirements for Approaches with Vertical Guidance (APV-I), which is characterised by 40 m HAL (horizontal alarm limit) and 50 m VAL (vertical alarm limit).
54
84390
A Fast GPS Satellites Signals Detection Algorithm Based on Simplified Fast Fourier Transform
Abstract:
Due to the Doppler effect caused by the high velocity of satellite and in some case receivers, the frequency of the Global Positioning System (GPS) signals are transformed into a new ones. Several acquisition algorithms frequency of the Global Positioning System (GPS) signals are transformed can be used to estimate the new frequency and phase shifts values. Numerous algorithms are based on the frequencies domain calculation. Our developed algorithm is a new approach dedicated to the Global Positioning System signal acquisition based on the fast Fourier transform. Our proposed new algorithm is easier to implement and has fast execution time compared with elder ones.
53
84381
Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region
Abstract:
Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.
52
84243
Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications
Abstract:
China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.
51
83892
Analyzing the Changing Pattern of Nigerian Vegetation Zones and Its Ecological and Socio-Economic Implications Using Spot-Vegetation Sensor
Authors:
Abstract:
This study assesses the major ecological zones in Nigeria with the view to understanding the spatial pattern of vegetation zones and the implications on conservation within the period of sixteen (16) years. Satellite images used for this study were acquired from the SPOT-VEGETATION between 1998 and 2013. The annual NDVI images selected for this study were derived from SPOT-4 sensor and were acquired within the same season (November) in order to reduce differences in spectral reflectance due to seasonal variations. The images were sliced into five classes based on literatures and knowledge of the area (i.e. <0.16 Non-Vegetated areas; 0.16-0.22 Sahel Savannah; 0.22-0.40 Sudan Savannah, 0.40-0.47 Guinea Savannah and >0.47 Forest Zone). Classification of the 1998 and 2013 images into forested and non forested areas showed that forested area decrease from 511,691 km2 in 1998 to 478,360 km2 in 2013. Differencing change detection method was performed on 1998 and 2013 NDVI images to identify areas of ecological concern. The result shows that areas undergoing vegetation degradation covers an area of 73,062 km2 while areas witnessing some form restoration cover an area of 86,315 km2. The result also shows that there is a weak correlation between rainfall and the vegetation zones. The non-vegetated areas have a correlation coefficient (r) of 0.0088, Sahel Savannah belt 0.1988, Sudan Savannah belt -0.3343, Guinea Savannah belt 0.0328 and Forest belt 0.2635. The low correlation can be associated with the encroachment of the Sudan Savannah belt into the forest belt of South-eastern part of the country as revealed by the image analysis. The degradation of the forest vegetation is therefore responsible for the serious erosion problems witnessed in the South-east. The study recommends constant monitoring of vegetation and strict enforcement of environmental laws in the country.
50
83710
Spatio-Temporal Analysis of Land Use and Land Cover Change in the Cocoa Belt of Ondo State, southwestern Nigeria
Abstract:
The study evaluates land use and land cover changes in the cocoa belt of Ondo state to quantify its effect on the expanse of land occupied by cocoa plantation as the most suitable region for cocoa raisin in Nigeria. Time series of satellite imagery from Landsat-7 ETM+ and Landsat-8 TIRS covering years 2000 and 2015 respectively were used. The study area was classified into six land use themes of cocoa plantation, settlement, water body, light forest and grassland, forest, and bar surface and rock outcrop. The analyses revealed that out of total land area of 997714 hectares of land of the study area, cocoa plantation land use increased by 10.3% in 2015 from 312260.6 ha in 2000. Forest land use also increased by 6.3% in 2015 from 152144.1 ha in the year 2000, water body reduced from 2954.5 ha in the year 2000 by 0.1% in 2015, settlement land use increased by 3% in 2015 from 15194.6 ha in 2000, light forest and grassland area reduced by 10.4% between 2000 and 2015 and 9.1% reduction in bar surface and rock outcrop land use between the year 2000 and 2015 respectively. The reasons for different ranges in the changes observed in the land use and land cover in the study area could be due to increase in the incentive to cocoa farmers from both government and non-governmental organizations, developed new cocoa breed that thrive better in the light forest, rapid increased in the population of cocoa farmers’ settlements, and government promulgation of forest reserve law.
49
82953
Identification and Optimisation of South Africa's Basic Access Road Network
Abstract:
Road authorities are mandated within limited budgets to both deliver improved access to basic services and facilitate economic growth. This responsibility is further complicated if maintenance backlogs and funding shortfalls exist, as evident in many countries including South Africa. These conditions require authorities to make difficult prioritisation decisions, with the effect that Road Asset Management Systems with a one-dimensional focus on traffic volumes may overlook the maintenance of low-volume roads that provide isolated communities with vital access to basic services. Given these challenges, this paper overlays the full South African road network with geo-referenced information for population, primary and secondary schools, and healthcare facilities to identify the network of connective roads between communities and basic service centres. This connective network is then rationalised according to the Gross Value Added and number of jobs per mesozone, administrative and functional road classifications, speed limit, and road length, location, and name to estimate the Basic Access Road Network. A two-step floating catchment area (2SFCA) method, capturing a weighted assessment of drive-time to service centres and the ratio of people within a catchment area to teachers and healthcare workers, is subsequently applied to generate a Multivariate Road Index. This Index is used to assign higher maintenance priority to roads within the Basic Access Road Network that provide more people with better access to services. The relatively limited incidence of Basic Access Roads indicates that authorities could maintain the entire estimated network without exhausting the available road budget before practical economic considerations get any purchase. Despite this fact, a final case study modelling exercise is performed for the Namakwa District Municipality to demonstrate the extent to which optimal relocation of schools and healthcare facilities could minimise the Basic Access Road Network and thereby release budget for investment in roads that best promote GDP growth.