Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Abstract Count: 53449

Geological and Environmental Engineering

703
95133
Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System
Authors:
Abstract:
Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity.
Digital Article Identifier (DAI):
702
94947
Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations
Abstract:
Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 
Digital Article Identifier (DAI):
701
94113
Rainstorm Characteristics over the Northeastern Region of Thailand: Weather Radar Analysis
Abstract:
Radar reflectivity data from Phimai weather radar station of DRRAA (Department of Royal Rainmaking and Agricultural Aviation) were used to analyzed the rainstorm characteristics via Thunderstorm Identification Tracking Analysis and Nowcasting (TITAN) algorithm. The Phimai weather radar station was situated at Nakhon Ratchasima province, northeastern Thailand. The data from 277 days of rainstorm events occurring from May 2016 to May 2017 were used to investigate temporal distribution characteristics of convective individual rainclouds. The important storm properties, structures, and their behaviors were analyzed by 9 variables as storm number, storm duration, storm volume, storm area, storm top, storm base, storm speed, storm orientation, and maximum storm reflectivity. The rainstorm characteristics were also examined by separating the data into two periods as wet and dry season followed by an announcement of TMD (Thai Meteorological Department), under the influence of southwest monsoon (SWM) and northeast monsoon (NEM). According to the characteristics of rainstorm results, it can be seen that rainstorms during the SWM influence were found to be the most potential rainstorms over northeastern region of Thailand. The SWM rainstorms are larger number of the storm (404, 140 no./day), storm area (34.09, 26.79 km²) and storm volume (95.43, 66.97 km³) than NEM rainstorms, respectively. For the storm duration, the average individual storm duration during the SWM and NEM was found a minor difference in both periods (47.6, 48.38 min) and almost all storm duration in both periods were less than 3 hours. The storm velocity was not exceeding 15 km/hr (13.34 km/hr for SWM and 10.67 km/hr for NEM). For the rainstorm reflectivity, it was found a little difference between wet and dry season (43.08 dBz for SWM and 43.72 dBz for NEM). It assumed that rainstorms occurred in both seasons have same raindrop size.
Digital Article Identifier (DAI):
700
93400
Empirical Green’s Function Technique for Accelerogram Synthesis: The Problem of the Use for Marine Seismic Hazard Assessment
Abstract:
Instrumental seismological researches in water areas are complicated and expensive, that leads to the lack of strong motion records in most offshore regions. In the same time the number of offshore industrial infrastructure objects, such as oil rigs, subsea pipelines, is constantly increasing. The empirical Green’s function technique proved to be very effective for accelerograms synthesis under the conditions of poorly described seismic wave propagation medium. But the selection of suitable small earthquake record in offshore regions as an empirical Green’s function is a problem because of short seafloor instrumental seismological investigation results usually with weak micro-earthquakes recordings. An approach based on moving average smoothing in the frequency domain is presented for preliminary processing of weak micro-earthquake records before using it as empirical Green’s function. The method results in significant waveform correction for modeled event. The case study for 2009 L’Aquila earthquake was used to demonstrate the suitability of the method. This work was supported by the Russian Foundation of Basic Research (project № 18-35-00474 mol_a).
Digital Article Identifier (DAI):
699
93392
Experimental Quantification and Modeling of Dissolved Gas during Hydrate Crystallization: CO₂ Hydrate Case
Abstract:
Gas hydrates have long been considered as problematic for flow assurance in natural gas and oil transportation. On the other hand, they are now seen as future promising materials for various applications (i.e. desalination of seawater, natural gas and hydrogen storage, gas sequestration, gas combustion separation and cold storage and transport). Nonetheless, a better understanding of the crystallization mechanism of gas hydrate and of their formation kinetics is still needed for a better comprehension and control of the process. To that purpose, measuring the real-time evolution of the dissolved gas concentration in the aqueous phase during hydrate formation is required. In this work, CO₂ hydrates were formed in a stirred reactor equipped with an Attenuated Total Reflection (ATR) probe coupled to a Fourier Transform InfraRed (FTIR) spectroscopy analyzer. A method was first developed to continuously measure in-situ the CO₂ concentration in the liquid phase during solubilization, supersaturation, hydrate crystallization and dissociation steps. Thereafter, the measured concentration data were compared with those of equilibrium concentrations. It was observed that the equilibrium is instantly reached in the liquid phase due to the fast consumption of dissolved gas by the hydrate crystallization. Consequently, it was shown that hydrate crystallization kinetics is limited by the gas transfer at the gas-liquid interface. Finally, we noticed that the liquid-hydrate equilibrium during the hydrate crystallization is governed by the temperature of the experiment under the tested conditions.
Digital Article Identifier (DAI):
698
93105
Observation on the Performance of Heritage Structures in Kathmandu Valley, Nepal during the 2015 Gorkha Earthquake
Abstract:
Kathmandu Valley, capital city of Nepal houses numerous historical monuments as well as religious structures which are as old as from the 4th century A.D. The city alone is home to seven UNESCO’s world heritage sites including various public squares and religious sanctums which are often regarded as living heritages by various historians and archeological explorers. Recently on April 25, 2015, the capital city including other nearby locations was struck with Gorkha earthquake of moment magnitude (Mw) 7.8, followed by the strongest aftershock of moment magnitude (Mw) 7.3 on May 12. This study reports structural failures and collapse of heritage structures in Kathmandu Valley during the earthquake and presents preliminary findings as to the causes of failures and collapses. Field reconnaissance was carried immediately after the main shock and the aftershock, in major heritage sites: UNESCO world heritage sites, a number of temples and historic buildings in Kathmandu Durbar Square, Patan Durbar Square, and Bhaktapur Durbar Square. Despite such catastrophe, a significant number of heritage structures stood high, performing very well during the earthquake. Preliminary reports from archeological department suggest that 721 of such structures were severely affected, whereas numbers within the valley only were 444 including 76 structures which were completely collapsed. This study presents recorded accelerograms and geology of Kathmandu Valley. Structural typology and architecture of the heritage structures in Kathmandu Valley are briefly described. Case histories of damaged heritage structures, the patterns, and the failure mechanisms are also discussed in this paper. It was observed that performance of heritage structures was influenced by the multiple factors such as structural and architecture typology, configuration, and structural deficiency, local ground site effects and ground motion characteristics, age and maintenance level, material quality etc. Most of such heritage structures are of masonry type using bricks and earth-mortar as a bonding agent. The walls' resistance is mainly compressive, thus capable of withstanding vertical static gravitational load but not horizontal dynamic seismic load. There was no definitive pattern of damage to heritage structures as most of them behaved as a composite structure. Some structures were extensively damaged in some locations, while structures with similar configuration at nearby location had little or no damage. Out of major heritage structures, Dome, Pagoda (2, 3 or 5 tiered temples) and Shikhara structures were studied with similar variables. Studying varying degrees of damages in such structures, it was found that Shikhara structures were most vulnerable one where Dome structures were found to be the most stable one, followed by Pagoda structures. The seismic performance of the masonry-timber and stone masonry structures were slightly better than that of the masonry structures. Regular maintenance and periodic seismic retrofitting seems to have played pivotal role in strengthening seismic performance of the structure. The study also recommends some key functions to strengthen the seismic performance of such structures through study based on structural analysis, building material behavior and retrofitting details. The result also recognises the importance of documentation of traditional knowledge and its revised transformation in modern technology.
Digital Article Identifier (DAI):
697
92792
Assessment of Environmental Impacts and Determination of Sustainability Level of BOOG Granite Mine Using a Mathematical Model
Abstract:
Sustainable development refers to the creation of a balance between the development and the environment too; it consists of three key principles namely environment, society and economy. These three parameters are related to each other and the imbalance occurs in each will lead to the disparity of the other parts. Mining is one of the most important tools of the economic growth and social welfare in many countries. Meanwhile, assessment of the environmental impacts has directed to the attention of planners toward the natural environment of the areas surrounded by mines and allowing for monitoring and controlling of the current situation by the designers. In this look upon, a semi-quantitative model using a matrix method is presented for assessing the environmental impacts in the BOOG Granite Mine located in Sistan and Balouchestan, one of the provinces of Iran for determining the effective factors and environmental components. For accomplishing this purpose, the initial data are collected by the experts at the next stage; the effect of the factors affects each environmental component is determined by specifying the qualitative viewpoints. Based on the results, factors including air quality, ecology, human health and safety along with the environmental damages resulted from mining activities in that area. Finally, the results gained from the assessment of the environmental impact are used to evaluate the sustainability by using Philips mathematical model. The results show that the sustainability of this area is weak, so environmental preventive measures are recommended to reduce the environmental damages to its components.
Digital Article Identifier (DAI):
696
92656
Analysis of Rainfall and Malaria Trends in Limpopo Province, South Africa
Abstract:
There was a surge in malaria morbidity as well as mortality in 2016/2017 malaria season in malaria-endemic regions of South Africa. Rainfall is a major climatic driver of malaria transmission and has potential use for predicting malaria. Annual and seasonal trends and cross-correlation analyses were performed on time series of monthly total rainfall (derived from interpolated weather station data) and monthly malaria cases in five districts of Limpopo Province for the period of 1998 to 2017. The time series analysis indicated that an average of 629.5mm of rainfall was received over the period of study. The rainfall has an annual variation of about 0.46%. Rainfall amount varies among the five districts, with the north-eastern part receiving more rainfall. Spearman’s correlation analysis indicated that total monthly rainfall with one to two months lagged effect is significant in malaria transmission in all the five districts. The strongest correlation is noticed in Mopani (r=0.54; p-value = < 0.001), Vhembe (r=0.53; p-value = < 0.001), Waterberg (r=0.40; p-value = < 0.001), Capricorn (r=0.37; p-value = < 0.001) and lowest in Sekhukhune (r=0.36; p-value = < 0.001). More particularly, malaria morbidity showed a strong relationship with an episode of rainfall above 5-year running means of rainfall of 400 mm. Both annual and seasonal analyses showed that the effect of rainfall on malaria varied across the districts and it is seasonally dependent. Adequate understanding of climatic variables dynamics annually and seasonally is imperative in seeking answers to malaria morbidity among other factors, particularly in the wake of the sudden spike of the disease in the province.
Digital Article Identifier (DAI):
695
92524
Finite Element Study of Coke Shape Deep Beam to Column Moment Connection Subjected to Cyclic Loading
Abstract:
Following the aftermath of the 1994 Northridge earthquake, intensive research on beam to column connections is conducted, leading to the current design basis. The current design codes require the use of either a prequalified connection or a connection that passes the requirements of large-scale cyclic qualification test prior to use in intermediate or special moment frames. The second alternative is expensive both in terms of money and time. On the other hand, the maximum beam depth in most of the prequalified connections is limited to 900mm due to the reduced rotation capacity of deeper beams. However, for long span beams the need to use deeper beams may arise. In this study, a beam to column connection detail suitable for deep beams is presented. The connection detail comprises of thicker-tapered beam flange adjacent to the beam to column connection. Within the thicker-tapered flange region, two reduced beam sections are provided with the objective of forming two plastic hinges within the tapered-thicker flange region. In addition, the length, width, and thickness of the tapered-thicker flange region are proportioned in such a way that a third plastic hinge forms at the end of the tapered-thicker flange region. As a result, the total rotation demand is distributed over three plastic zones. Making it suitable for deeper beams that have lower rotation capacity at one plastic hinge. The effectiveness of this connection detail is studied through finite element analysis. For the study, a beam that has a depth of 1200mm is used. Additionally, comparison with welded unreinforced flange-welded web (WUF-W) moment connection and reduced beam section moment connection is made. The results show that the rotation capacity of a WUF-W moment connection is increased from 2.0% to 2.2% by applying the proposed moment connection detail. Furthermore, the maximum moment capacity, energy dissipation capacity and stiffness of the WUF-W moment connection is increased up to 58%, 49%, and 32% respectively. In contrast, applying the reduced beam section detail to the same WUF-W moment connection reduced the rotation capacity from 2.0% to 1.50% plus the maximum moment capacity and stiffness of the connection is reduced by 22% and 6% respectively. The proposed connection develops three plastic hinge regions as intended and it shows improved performance compared to both WUF-W moment connection and reduced beam section moment connection. Moreover, the achieved rotation capacity satisfies the minimum required for use in intermediate moment frames.
Digital Article Identifier (DAI):
694
91838
Evolution of Plio/Pleistocene Sedimentary Processes in Patraikos Gulf, Offshore Western Greece
Abstract:
Patraikos Gulf is located offshore western Greece, and it is limited to the west by the Zante, Cephalonia, and Lefkas islands. The Plio/Pleistocene sequence is characterized by two depocenters, the east and west Patraikos basins separated from each other by a prominent sill. This study is based on the Plio/Pleistocene seismic stratigraphy analysis of a newly acquired 3D PSDM (Pre-Stack depth migration) seismic survey in the west Patraikos Basin and few 2D seismic profiles throughout the entire Patraikos Gulf. The eastern Patraikos Basin, although completely buried today with water depths less than 100 m, it was a deep basin during Pliocene ( > 2 km of Pliocene-Pleistocene sediments) and appears to have gathered most of Achelous River discharges. The west Patraikos Gulf was shallower ( < 1300 m of Pliocene-Pleistocene sediments) and characterized by a hummocky relief due to thrust-belt tectonics and Miocene to Pleistocene halokinetic processes. The transition from Pliocene to Miocene is expressed by a widespread erosional unconformity with evidence of fluvial drainage patterns. This indicates that west Patraikos Basin was aerially exposed during the Messinian Salinity Crisis. Continuous to semi-continuous, parallel reflections in the lower, early- to mid-Pliocene seismic packet provides evidence that the re-connection of the Mediterranean Sea with the Atlantic Ocean during Zanclean resulted in the flooding of the west Patraikos basin and the domination of hemipelagic sedimentation interrupted by occasional gravity flows. This is evident in amplitude and semblance horizon slices, which clearly show the presence of long-running, meandering submarine channels sourced from the southeast (northwest Peloponnese) and north. The long-running nature of the submarine channels suggests mobile efficient turbidity currents, probably due to the participation of a sufficient amount of clay minerals in their suspended load. The upper seismic section in the study area mainly consists of several successions of clinoforms, interpreted as progradational delta complexes of Achelous River. This sudden change from marine to shallow marine sedimentary processes is attributed to climatic changes and eustatic perturbations since late Pliocene onwards (~ 2.6 Ma) and/or a switch of Achelous River from the east Patraikos Basin to the west Patraikos Basin. The deltaic seismic unit consists of four delta complexes. The first two complexes result in the infill of topographic depressions and smoothing of an initial hummocky bathymetry. The distribution of the upper two delta complexes is controlled by compensational stacking. Amplitude and semblance horizon slices depict the development of several almost straight and short (a few km long) distributary submarine channels at the delta slopes and proximal prodeltaic plains with lobate sand-sheet deposits at their mouths. Such channels are interpreted to result from low-efficiency turbidity currents with low content in clay minerals. Such a differentiation in the nature of the gravity flows is attributed to the switch of the sediment supply from clay-rich sediments derived from the draining of flysch formations of the Ionian and Gavrovo zones, to the draining of poor in clay minerals carbonate formations of Gavrovo zone through the Achelous River.
Digital Article Identifier (DAI):
693
91567
Uncertainty in Near-Term Global Surface Warming Linked to Pacific Trade Wind Variability
Abstract:
Climate models generally simulate long-term reductions in the Pacific Walker Circulation with increasing atmospheric greenhouse gases. However, over two recent decades (1992-2011) there was a strong intensification of the Pacific Trade Winds that is linked with a slowdown in global surface warming. Using large ensembles of multiple climate models forced by increasing atmospheric greenhouse gas concentrations and starting from different ocean and/or atmospheric initial conditions, we reveal very diverse 20-year trends in the tropical Pacific climate associated with a considerable uncertainty in the globally averaged surface air temperature (SAT) in each model ensemble. This result suggests low confidence in our ability to accurately predict SAT trends over 20-year timescale only from external forcing. We show, however, that the uncertainty can be reduced when the initial oceanic state is adequately known and well represented in the model. Our analyses suggest that internal variability in the Pacific trade winds can mask the anthropogenic signal over a 20-year time frame, and drive transitions between periods of accelerated global warming and temporary slowdown periods.
Digital Article Identifier (DAI):
692
91210
The Paleoenvironment and Paleoclimatological Variations during Aptian in North Central Tunisia
Abstract:
This paper focuses on the sedimentological and mineralogical studies of Aptian series outcrops in the Serdj and Bellouta Mountain situated in north-central Tunisia. In the Serdj Mountain, the Aptian series is about 590 meters thick and it is defined by tow formations corresponding respectively to the Sidi Hamada formation (Barremian-Gragasian) and the Serdj formation (Middle Gragasian-Late Clansaysian). This later is consisting of five limestones sequences separated by marly levels limestones associated to some siltstones bed. The Bellouta section is especially composed of carbonate rocks and it is attributed to the Middle Gragasian - Late Clansaysian. These sections are studied in detail regarding lithology, micropaleontology, microfacies, magnetic susceptibility and mineralogical composition in order to provide new insights into the paleoenvironmental evolution and paleoclimatological implications during Aptian. The following facies associations representing different ramp palaeoenvironments have been identified: mudstone-wackestone outer ramp facies; skeletal grainstone-packstone mid-ramp facies, packstone-grainstone inner-ramp facies which include a variety of organisms such as ooliths, rudists ostracods associated to athor bioclats. The coastal facies is especially defined by a mudstone -wackestone texture coastal rich with miliolidea and orbitolines. The magnetic susceptibility (Xin) of all samples was compared with the lithological and microfacies variation. The MS curves show that the high values are correlated with the distal facies and the low values are registred in the coastal environment. The X-ray diffractometer analysis show the presence of kaolinite and illite.
Digital Article Identifier (DAI):
691
91103
A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System
Abstract:
The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.
Digital Article Identifier (DAI):
690
90781
Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle
Abstract:
The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.
Digital Article Identifier (DAI):
689
90754
Jalovchat Gabbroic Intrusive of the Caucasus: Petrological Study, Geochemical Peculiarities and Formation Conditions
Abstract:
The Jalovchat intrusive is built up of hornblende gabbros, gabbro-norites and norites. Within the intrusive hornblende-bearing gabbro-pegmatites are widespread. That is a coarse-grained rock with gigantic hornblende crystals. By its unusual composition, the Jalovchat intrusive has no analogue in the Caucasus. However, petrologically and geochemically, the intrusive rocks were studied insufficiently. For comprehensive investigations, the authors applied appropriate methodologies: Microscopic study of thin sections, petro- and geochemical analyses of the samples and also different petrogenic, rare and rare earth elements diagrams and spidergrams. Analytical study established that the Jalovchat intrusive by its composition corresponds mainly to the mid-ocean ridge basalts and according to geodynamic type belongs to the subduction type. In general, it is an anomalous phenomenon, as in the rocks of such composition crystallization of hornblende and especially of its gigantic crystals is atypical. The authors believe that the water-rich magma reservoir, which was necessary for the crystallization of gigantic hornblende crystals, appeared as a result of melting of water-rich mid-ocean ridge basaltic rocks during the subduction process in Bajocian time.
Digital Article Identifier (DAI):
688
90505
Evaluation of Critical Rate in Mature Oil Field with Dynamic Oil Rim Fluid Contacts in the Niger Delta
Abstract:
Most reservoir in mature oil fields are vulnerable to challenges of water and/or gas coning as the size of their oil column reduces due to long period of oil production. These often result to low oil production and excessive water and/or gas production. Since over 50 years of oil production in the Niger delta, it is apparent that most of the oil fields in the region have reached their mature stages, thereby susceptible to coning tendencies. As a result of these, a good number of wells have been shut-in and abandoned, with significant amount of oil left unproduced. Analysis of the movement of fluid contacts in the reservoir is a significant aspect of reservoir studies and can assist in the management of coning tendencies and production performance of reservoirs in a mature field. This study, therefore, seeks to evaluate the occurrence of coning through the movement of fluid contacts (GOC and OWC) and determine the critical rate for controlling coning tendencies in mature oil field. This study applies the principle of Nodal analysis to calibrate the thin oil column of a reservoir of a mature field, and was graphically evaluated using the Joshi’s equation of critical rate for gas-oil system and oil-water system respectively. A representative Proxy equation was developed and sensitivity analysis carried out to determine the trend of critical rate as the oil column is been depleted. The result shows the trend in the movement of the GOC and OWC, and the critical rate, beyond which will result in excessive water and gas production, resulting to decreasing oil production from the reservoir. This result of this study can be used as a first pass assessment in the development of mature oil field reservoirs anticipated to experience water and/or gas coning during production.
Digital Article Identifier (DAI):
687
90446
Sustainable Geographic Information System-Based Map for Suitable Landfill Sites in Aley and Chouf, Lebanon
Abstract:
Municipal solid waste (MSW) generation is among the most significant sources which threaten the global environmental health. Solid Waste Management has been an important environmental problem in developing countries because of the difficulties in finding sustainable solutions for solid wastes. Therefore, more efforts are needed to be implemented to overcome this problem. Lebanon has suffered a severe solid waste management problem in 2015, and a new landfill site was proposed to solve the existing problem. The study aims to identify and locate the most suitable area to construct a landfill taking into consideration the sustainable development to overcome the present situation and protect the future demands. Throughout the article, a landfill site selection methodology was discussed using Geographic Information System (GIS) and Multi Criteria Decision Analysis (MCDA). Several environmental, economic and social factors were taken as criterion for selection of a landfill. Soil, geology, and LUC (Land Use and Land Cover) indices with the Sustainable Development Index were main inputs to create the final map of Environmentally Sensitive Area (ESA) for landfill site. Different factors were determined to define each index. Input data of each factor was managed, visualized and analyzed using GIS. GIS was used as an important tool to identify suitable areas for landfill. Spatial Analysis (SA), Analysis and Management GIS tools were implemented to produce input maps capable of identifying suitable areas related to each index. Weight has been assigned to each factor in the same index, and the main weights were assigned to each index used. The combination of the different indices map generates the final output map of ESA. The output map was reclassified into three suitability classes of low, moderate, and high suitability. Results showed different locations suitable for the construction of a landfill. Results also reflected the importance of GIS and MCDA in helping decision makers finding a solution of solid wastes by a sanitary landfill.
Digital Article Identifier (DAI):
686
90355
Strategic Metals and Rare Earth Elements Exploration of Lithium Cesium Tantalum Type Pegmatites: A Case Study from Northwest Himalayas
Abstract:
The LCT (Li, Cs and Ta rich)-type pegmatites, genetically related to peraluminous S-type granites, are being mined for strategic metals (SMs) and rare earth elements (REEs) around the world. This study investigates the SMs and REEs potentials of pegmatites that are spatially associated with an S-type granitic suite of the Himalayan sequence, specifically Mansehra Granitic Complex (MGC), northwest Pakistan. Geochemical signatures of the pegmatites and some of their mineral extracts were analyzed using Inductive Coupled Plasma Mass Spectroscopy (ICP-MS) technique to explore and generate potential prospects (if any) for SMs and REEs. In general, the REE patterns of the studied whole-rock pegmatite samples show tetrad effect and possess low total REE abundances, strong positive Europium (Eu) anomalies, weak negative Cesium (Cs) anomalies and relative enrichment in heavy REE. Similar features have been observed on the REE patterns of the feldspar extracts. However, the REE patterns of the muscovite extracts reflect preferential enrichment and possess negative Eu anomalies. The trace element evaluation further suggests that the MGC pegmatites have undergone low levels of fractionation. Various trace elements concentrations (and their ratios) including Ta versus Cs, K/Rb (Potassium/Rubidium) versus Rb and Th/U (Thorium/Uranium) versus K/Cs, were used to analyze the economically viable mineral potential of the studied rocks. On most of the plots, concentrations fall below the dividing line and confer either barren or low-level mineralization potential of the studied rocks for both SMs and REEs. The results demonstrate paucity of the MGC pegmatites with respect to Ta-Nb (Tantalum-Niobium) mineralization, which is in sharp contrast to many Pan-African S-type granites around the world. The MGC pegmatites are classified as muscovite pegmatites based on their K/Rb versus Cs relationship. This classification is consistent with the occurrence of rare accessory minerals like garnet, biotite, tourmaline, and beryl. Furthermore, the classification corroborates with an earlier sorting of the MCG pegmatites into muscovite-bearing, biotite-bearing, and subordinate muscovite-biotite types. These types of pegmatites lack any significant SMs and REEs mineralization potentials. Field relations, such as close spatial association with parent granitic rocks and absence of internal zonation structure, also reflect the barren character and hence lack of any potential prospects of the MGC pegmatites.
Digital Article Identifier (DAI):
685
89900
Fuzzy Expert Approach for Risk Mitigation on Functional Urban Areas Affected by Anthropogenic Ground Movements
Abstract:
A number of European cities are strongly affected by ground movements caused by anthropogenic activities or post-anthropogenic metamorphosis. Those are mainly water pumping, current mining operation, the collapse of post-mining underground voids or mining-induced earthquakes. These activities lead to large and small-scale ground displacements and a ground ruptures. The ground movements occurring in urban areas could considerably affect stability and safety of structures and infrastructures. The complexity of the ground deformation phenomenon in relation to the structures and infrastructures vulnerability leads to considerable constraints in assessing the threat of those objects. However, the increase of access to the free software and satellite data could pave the way for developing new methods and strategies for environmental risk mitigation and management. Open source geographical information systems (OS GIS), may support data integration, management, and risk analysis. Lately, developed methods based on fuzzy logic and experts methods for buildings and infrastructure damage risk assessment could be integrated into OS GIS. Those methods were verified base on back analysis proving their accuracy. Moreover, those methods could be supported by ground displacement observation. Based on freely available data from European Space Agency and free software, ground deformation could be estimated. The main innovation presented in the paper is the application of open source software (OS GIS) for integration developed models and assessment of the threat of urban areas. Those approaches will be reinforced by analysis of ground movement based on free satellite data. Those data would support the verification of ground movement prediction models. Moreover, satellite data will enable our mapping of ground deformation in urbanized areas. Developed models and methods have been implemented in one of the urban areas hazarded by underground mining activity. Vulnerability maps supported by satellite ground movement observation would mitigate the hazards of land displacements in urban areas close to mines.
Digital Article Identifier (DAI):
684
89089
Lateral Heterogeneity of 1/Q in Eastern and Southeastern Anatolia
Authors:
Abstract:
The Coda attenuation and frequency dependency of seismic wave are strongly dependent on the effective stresses structures within the upper crust. In this study, the data of three different stations were used to examine the lateral variation of stress. The tectonic structures of these three areas have been examined comparatively using lateral coda tomography. In the study using the single scatter method, the window length selected to be 20 second. Coda values 80 with 94 and frequency dependency values obtained between 0.69 and 1.21. The 1/QC values for the three regions ranged from 0.0012 to 0.017, highlighting the regional differences in the seismotectonic activity of the crust. The lowest absorption values obtained from Erzurum station when the highest absorption values obtained at the Kemaliye station. The low Qc and high frequency dependency values obtained Kemaliye, which indicates that it has highest tectonic activity than other two regions. The seismo-dynamics data obtained from the study found to be in agreement with the tectonic structure of the region.
Digital Article Identifier (DAI):
683
89043
The Study on Blast Effect of Polymer Gel by Trazul Lead Block Test and Concrete Block Test
Abstract:
In this study, the polymer gel was used as coupling material in a blasting hole and its comparison was made with other coupling materials like sand, water, and air. Trazul lead block test and AUTODYN numerical analysis were conducted to analyze the effects of the coupling materials on the intensity of the explosion, as well as the verification tests were conducted by using concrete block test. The emulsion explosives were used in decoupling conditions, sand, water, and polymer gel were used as the coupling materials. The lead block test and the numerical analysis showed that the expansion of the blast hole in the lead block was similar to that of the water and gelatin and followed by sand and air conditions. The validation of concrete block test result showed the similar result as Trazul lead block test and the explosion strength was measured at 0.8 for polymer gel, 0.7 for sand, and 0.6 for no coupling material, in comparison to the full charge (1.0) case.
Digital Article Identifier (DAI):
682
88938
Loss in Efficacy of Viscoelastic Ionic Liquid Surfactants under High Salinity during Surfactant Flooding
Abstract:
When selecting surfactants for surfactant flooding during enhanced oil recovery, the most important criteria is that the surfactant system should reduce the interfacial tension between water and oil to ultralow values. In the present study, a mixture of ionic liquid surfactant and commercially available binding agent sodium tosylate has been used as a surfactant mixture. Presence of wormlike micelles indicates the possibility of achieving ultralow interfacial tension. Surface tension measurements of the mixed surfactant system have been studied. The emulsion size distribution of the mixed surfactant system at varying salinities has been studied. It has been found that at high salinities the viscoelastic surfactant system loses their efficacy and degenerate. Hence the given system may find application in low salinity reservoirs, providing good mobility to the flood during tertiary oil recovery process.
Digital Article Identifier (DAI):
681
88911
Spatiotemporal Variability of Snow Cover and Snow Water Equivalent over Eurasia
Abstract:
Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972–2006 and the Global Monthly EASE-Grid SWE data for 1979–2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972–2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as the partial area of Central Asia and northwestern Russia but varied little in other parts of Eurasia. ‘Snow-free breaks’ (SFBs) with intermittent snow cover in the cold season were mainly observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1–14 weeks in the Tibetan Plateau during 1972–2006 and the maximum intermittence could reach 25 weeks in some extreme years. At a seasonal scale, the SWE usually peaked in February or March but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979–2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China.
Digital Article Identifier (DAI):
680
88591
Computation of Flood and Drought Years over the North-West Himalayan Region Using India Meteorological Department Rainfall Data
Abstract:
The climatic conditions of India have been defined by the monsoon as rainfall, temperature, etc. are influenced greatly by it. As a great physiographic divide the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. India receives more than 75% of rainfall during southwest monsoon. Indian economy is highly dependent on agriculture. And according to this viewpoint, the presence of flood and drought years influenced the total cultivation system as well as the economy of the country as Indian agricultural systems are still now highly dependent on the monsoon rainfall. Now a day’s extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayas (NWH) which is directly related to rainfall system. The present study has been planned to investigate the flood and drought years for that region from 1951 to 2014 by using area average IMD rainfall data. For this investigation, the normalized index (NI) has been utilized to find out whether the particular year is drought or flood. The data has been extracted for the NWH region states namely Uttarakhand (UK), Himachal Pradesh (HP) and Jammu and Kashmir (J and K) to find out the rainy season average rainfall for each year, climatological mean and the standard deviation. After calculation it has been plotted by the diagrams (or graphs) to show the results; some of the years associated with drought years, some are flood years, and rest are neutral. It can also be related with the El-Nino and La-Lina year to find out the fluctuation of monsoon rainfall and its underlying physical mechanism. Further discussions about this work will be done at the time of presentation.
Digital Article Identifier (DAI):
679
87755
Preliminary Study of Sponge Spicule to Understand Paleobathymetry, Sentolo Formation, Kulon Progo, Daerah Istimewa Yogyakarta
Abstract:
The phylum Porifera, commonly known as sponges, is a group of primitive animals living since Paleozoic-recent, currently have over 8300 described species, where the majority lives in the marine environment and sessile or in situ. Sponge spicule is one part of the body that secreted by sponge; this spicule can be well preserved because it composed of silicate material. Sponge spicule was identified based on morphological form, which was classified into two main classes, Megasclere and Microsclere. Any form of spicule morphology will indicate a particular sponge species, and it also related to the sponge living environment. Therefore, understanding the paleobathymetry using spicules can be done and more detailed because of sponge living in situ. The methods used in this paper are stratigraphic measurement, continuous sampling, and sieve preparation to dissolve calcareous and siliciclastics materials. Then, each spicule was picked by picking method for every 100 grams of each sample and identified the morphological form to determine the order and abundance of spicule. 10 samples have analyzed, 1489 spicules were identified, there were two classes of Porifera, Demospongiae, and Hexactinellida. Five orders of Porifera also identified in the research area, Haplosclerida, Hadromerida, Agelasida, Lithistids, and Lyssacinosida. The results from descriptive analysis and spicule abundance can be understood that the paleobathymetry of research area was in intertidal zone. Furthermore, the variation and abundance of sponge spicule can be used to understand the paleobathymetry and depositional environment.
Digital Article Identifier (DAI):
678
87640
Groundwater Potential Zone Identification in Unconsolidated Aquifer Using Geophysical Techniques around Tarbela Ghazi, District Haripur, Pakistan
Abstract:
Electrical resistivity investigation was conducted in vicinity of Tarbela Ghazi, in order to study the subsurface layer with a view of determining the depth to the aquifer and thickness of groundwater potential zones. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at 16 VES stations. Well logging data at four tube wells have been used to mark the super saturated zones with great discharge rate. The present paper shows a geoelectrical identification of the lithology and an estimate of the relationship between the resistivity and Dar Zarrouk parameters (transverse unit resistance and longitudinal unit conductance). The VES results revealed both homogeneous and heterogeneous nature of the subsurface strata. Aquifer is unconfined to confine in nature, and at few locations though perched aquifer has been identified, groundwater potential zones are developed in unconsolidated deposits layers and more than seven geo-electric layers are observed at some VES locations. Saturated zones thickness ranges from 5 m to 150 m, whereas at few area aquifer is beyond 150 m thick. The average anisotropy, transvers resistance and longitudinal conductance values are 0.86 %, 35750.9821 Ω.m2, 0.729 Siemens, respectively. The transverse unit resistance values fluctuate all over the aquifer system, whereas below at particular depth high values are observed, that significantly associated with the high transmissivity zones. The groundwater quality in all analyzed samples is below permissible limit according to World Health Standard (WHO).
Digital Article Identifier (DAI):
677
87622
Affect of Reservoir Fluctuations on an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China
Authors:
Abstract:
Filling of Xiangjiaba Reservoir Lake in Southwest China triggered and re-activated numerous landslides due to water fluctuation. In order to understand the relationship between reservoirs and slope instability, a typical reservoir landslide (Dasha landslide) at right bank of Jinsha River was selected as a case study for in-depth investigations. The detailed field investigations were carried out in order to identify the landslide with respect to its surroundings and to find out the slip-surface. Boreholes were drilled in order to find out the subsurface lithology and the depth of failure of Dasha landslide. The in-situ geotechnical tests were performed, and the soil samples from exposed slip surface were retrieved for geotechnical laboratory analysis. Finally, stability analysis was done using 3D strength reduction method under different conditions of reservoir water level fluctuations and rainfall conditions. The in-depth investigations show that the Dasha landslide is a bedding rockslide which was once activated in 1986. The topography of Dasha landslide is relatively flat, while the back scarp and local terrain are relatively steep. The landslide area is about 29 × 104 m², and the maximum thickness of the landslide deposits revealed by drilling is about 40 m with the average thickness being about 20 m, and the volume is thus estimated being about 580 × 10⁴ m³. Bedrock in the landslide area is composed of Suining Formation of Jurassic age. The main rock type is silty mudstone with sandstone, and bedding orientation is 300~310° ∠ 7~22°. The factor of safety (FOS) of Dasha landslide obtained by 3D strength reduction cannot meet the minimum safety requirement under the working condition of reservoir level fluctuation as designed, with effect of rainfall and rapid drawdown.
Digital Article Identifier (DAI):
676
87240
Organic Facies Classification, Distribution, and Their Geochemical Characteristics in Sirt Basin, Libya
Abstract:
The failed rifted epicratonic Sirt basin is located in the northern margin of the African Plate with an area of approximately 600,000 km2. The organofacies' classification, characterization, and its distribution vertically and horizontally are carried out in 7 main troughs with 32 typical selected wells. 7 geological and geochemical cross sections including Rock-Eval data and % TOC data are considered in order to analyze and to characterize the main organofacies with respect to their geochemical and geological controls and also to remove the ambiguity behind the complexity of the orgnofacies types and distributions in the basin troughs from where the oil and gas are generated and migrated. This study confirmes that there are four different classical types of organofacies distributed in Sirt basin F, D/E, C, and B. these four clasical types of organofacies controls the type and amount of the hydrocarbon discovered in Sirt basin. Oil bulk property data from more than 20 oil and gas fields indicate that D/E organoface are significant oil and gas contributors similar to B organoface. In the western Sirt basin in Zallah-Dur Al Abd, Hagfa, Kotla, and Dur Atallha troughs, F organoface is identified for Etel formation, Kalash formation and Hagfa formation having % TOC < 0.6, whereas the good quality D/E and B organofacies present in Rachmat formation and Sirte shale formation both have % TOC > 1.1. Results from the deepest trough (Ajdabiya), Etel (Gas pron in Whadyat trough), Kalash, and Hagfa constitute F organofacies, mainly. The Rachmat and Sirt shale both have D/E to B organofacies with % TOC > 1.2, thus indicating the best organofacies quality in Ajdabiya trough. In Maragh trough, results show that Etel F organofacies and D/E, C to B organofacies related to Middle Nubian, Rachmat, and Sirte shale have %TOC > 0.66. Towards the eastern Sirt basin, in troughs (Hameimat, Faregh, and Sarir), results show that the Middle Nubian, Etel, Rachmat, and Sirte shales are strongly dominated by D/E, C to B (% TOC > 0.75) organofacies.
Digital Article Identifier (DAI):
675
87216
Preliminary Studies in the Determination of Deteriorations in Eflatunpınar Hitit Water Monument (Konya, Turkey) by Non-Destructive Tests
Abstract:
The building stones used in the construction of historical structures are exposed to atmospheric effects directly or indirectly. As a result of this process, building stones are partially or completely degraded. Historical buildings are important symbols of cultural heritage, so it is very significant to transfer to the future generations by protecting and repairing of these historical buildings. The Eflatunpınar Hitit Monument located near the Eflatunpınar cold water spring was constructed by using natural rock blocks during the Hittites Empire period. The monument has been protected without losing its function until today. The purpose of this study is to evaluate the deteriorations in the Eflatunpınar Hitit Monument and to detect the water chemistry of the Eflatunpınar spring located around the Beysehir County in the west of Konya. For this purpose, the petrographic and mechanical properties of the rocks used in this monument were determined, and the deteriorations in the monument were determined with the aid of non-destructive test methods including Schmidt hardness value, relative humidity measurement, thermal imaging. Additionally, the physical (electrical conductivity (EC), pH and temperature) and chemical characteristics (major anions and cations) of the Eflatunpınar cold water spring have been detected.
Digital Article Identifier (DAI):
674
87094
Cartographic Depiction and Visualization of Wetlands Changes in the North-Western States of India
Abstract:
Cartographic depiction and visualization of wetland changes is an important tool to map spatial-temporal information about the wetland dynamics effectively and to comprehend the response of these water bodies in maintaining the groundwater and surrounding ecosystem. This is true for the states of North Western India, i.e., J&K, Himachal, Punjab, and Haryana that are bestowed upon with several natural wetlands in the flood plains or on the courses of its rivers. Thus, the present study documents, analyses and reconstructs the lost wetlands, which existed in the flood plains of the major river basins of these states, i.e., Chenab, Jhelum, Satluj, Beas, Ravi, and Ghagar, in the beginning of the 20th century. To achieve the objective, the study has used multi-temporal datasets since the 1960s using high to medium resolution satellite datasets, e.g., Corona (1960s/70s), Landsat (1990s-2017) and Sentinel (2017). The Sentinel (2017) satellite image has been used for making the wetland inventory owing to its comparatively higher spatial resolution with multi-spectral bands. In addition, historical records, repeated photographs, historical maps, field observations including geomorphological evidence were also used. The water index techniques, i.e., band rationing, normalized difference water index (NDWI), modified NDWI (MNDWI) have been compared and used to map the wetlands. The wetland types found in the north-western states have been categorized under 19 classes suggested by Space Application Centre, India. These enable the researcher to provide with the wetlands inventory and a series of cartographic representation that includes overlaying multiple temporal wetlands extent vectors. A preliminary result shows the general state of wetland shrinkage since the 1960s with varying area shrinkage rate from one wetland to another. In addition, it is observed that majority of wetlands have not been documented so far and even do not have names. Moreover, the purpose is to emphasize their elimination in addition to establishing a baseline dataset that can be a tool for wetland planning and management. Finally, the applicability of cartographic depiction and visualization, historical map sources, repeated photographs and remote sensing data for reconstruction of long term wetlands fluctuations, especially in the northern part of India, will be addressed.
Digital Article Identifier (DAI):