Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Abstract Count: 45197

Mathematical and Computational Sciences

979
78883
Asymptotic Expansion of the Korteweg-de Vries-Burgers Equation
Authors:
Abstract:
It is common knowledge that many physical problems (such as non-linear shallow-water waves and wave motion in plasmas) can be described by the Korteweg-de Vries (KdV) equation, which possesses certain special solutions, known as solitary waves or solitons. As a marriage of the KdV equation and the classical Burgers (KdVB) equation, the Korteweg-de Vries-Burgers (KdVB) equation is a mathematical model of waves on shallow water surfaces in the presence of viscous dissipation. Asymptotic analysis is a method of describing limiting behavior and is a key tool for exploring the differential equations which arise in the mathematical modeling of real-world phenomena. By using variable transformations, the asymptotic expansion of the KdVB equation is presented in this paper. The asymptotic expansion may provide a good gauge on the validation of the corresponding numerical scheme.
978
78773
Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling
Abstract:
In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.
977
78768
Bulk Viscous Bianchi Type V Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant in General Relativity
Abstract:
In this paper, we investigate Bulk Viscous Bianchi Type V Cosmological Model with Time dependent gravitational constant and cosmological constant in general Relativity by assuming ξ(t)=ξ_(0 ) p^m where ξ_(0 ) and m are constants. We also assume a variation law for Hubble parameter as H(R) = a (R^(-n)+1), where a>0, n>1 being constant. Two universe models were obtained, and their physical behavior has been discussed. When n=1 the Universe starts from singular state whereas when n=0 the cosmology follows a no singular state. The presence of bulk viscosity increase matter density’s value.
976
78712
Trinary Affinity—Mathematic Verification and Application (1): Construction of Formulas for the Composite and Prime Numbers
Abstract:
Trinary affinity is a description of existence: every object exists as it is known and spoken of, in a system of 2 differences (denoted dif1, dif₂) and 1 similarity (Sim), equivalently expressed as dif₁ / Sim / dif₂ and kn / 0 / tkn (kn = the known, tkn = the 'to be known', 0 = the zero point of knowing). They are mathematically verified and illustrated in this paper by the arrangement of all integers onto 3 columns, where each number exists as a difference in relation to another number as another difference, and the 2 difs as arbitrated by a third number as the Sim, resulting in a trinary affinity or trinity of 3 numbers, of which one is the known, the other the 'to be known', and the third the zero (0) from which both the kn and tkn are measured and specified. Consequently, any number is horizontally specified either as 3n, or as '3n – 1' or '3n + 1', and vertically as 'Cn + c', so that any number seems to occur at the intersection of its X and Y axes and represented by its X and Y coordinates, as any point on Earth’s surface by its latitude and longitude. Technically, i) primes are viewed and treated as progenitors, and composites as descending from them, forming families of composites, each capable of being measured and specified from its own zero called in this paper the realistic zero (denoted 0r, as contrasted to the mathematic zero, 0m), which corresponds to the constant c, and the nature of which separates the composite and prime numbers, and ii) any number is considered as having a magnitude as well as a position, so that a number is verified as a prime first by referring to its descriptive formula and then by making sure that no composite number can possibly occur on its position, by dividing it with factors provided by the composite number formulas. The paper consists of 3 parts: 1) a brief explanation of the trinary affinity of things, 2) the 8 formulas that represent ALL the primes, and 3) families of composite numbers, each represented by a formula. A composite number family is described as 3n + f₁‧f₂. Since there are an infinitely large number of composite number families, to verify the primality of a great probable prime, we have to have it divided with several or many a f₁ from a range of composite number formulas, a procedure that is as laborious as it is the surest way to verifying a great number’s primality. (So, it is possible to substitute planned division for trial division.)
975
78455
On Chvátal's Conjecture for the Hamiltonicity of 1-Tough Graphs and Their Complements
Abstract:
Graph toughness and the associated cycle structure have attracted much attention and aroused extensive works since Chvátal introduced this concept in 1973. Among the seven conjectures posted by then, much fewer results were published for the one relating the existence of a hamiltonian cycle in any 1-tough graph to its complement graph. In this paper, we show that the conjecture does not hold in general. More precisely, it is true only for graphs with six or seven vertices and is false for graphs with eight or more vertices. A new theorem is derived as a correction for the conjecture.
974
78319
Boundary Condition with the Riemann-Liouville Fractional Time Derivative at a Thin Membrane for Normal Diffusion
Abstract:
In many physical models concerning various diffusion processes, fractional derivatives are involved in diffusion equations. However, in many cases the interpretation of the equations is vague. In practice, an experimental verification of fractional models is also a problem. In our contribution, we study normal diffusion in a system with a thin membrane. We show the method of deriving boundary conditions at the membrane directly from experimental data. One of the conditions contains the Riemann-Liouville time fractional derivative of 1/2 order. Such boundary condition is rather unexpected since, as far as we know, there is no need to involve fractional time derivative in normal diffusion model. We analyze an influence of fractional derivative occurring in the boundary condition on diffusion process. The physical interpretation of the boundary condition is given as well.
973
78296
Total Controllability of the Second Order Nonlinear Differential Equation with Delay and Non-Instantaneous Impulses
Abstract:
A stronger concept of exact controllability which is called Total Controllability is introduced in this manuscript. Sufficient conditions have been established for the total controllability of a control problem, governed by second order nonlinear differential equation with delay and non-instantaneous impulses in a Banach space X. The results are obtained using the strongly continuous cosine family and Banach fixed point theorem. Also, the total controllability of an integrodifferential problem is investigated. At the end, some numerical examples are provided to illustrate the analytical findings.
972
78110
One-Step Time Series Predictions with Recurrent Neural Networks
Abstract:
Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.
971
78026
Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm
Authors:
Abstract:
A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy.
970
77919
Generalized Rough Sets Applied to Graphs Related on Urban Problems
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, etc.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premiere in this paper, contributes to improve significantly the evaluaion of k-connectivity. This rough set approach is based on generalized rough sets -basic facts are presented in this paper.
969
77885
Optimal Control for Dengue Dynamics: Antibody and Wolbachia
Abstract:
We propose a mathematical model which portrays the transmission dynamics of dengue. First, the optimal control representing antibody and Wolbachia for this model is explored. Optimal control theory is a mathematical method originating from the Calculus of Variations. It is very valuable in decision making concerning multifaceted biological situations. It helps in minimizing the number of infectious classes and the cost of applying the controls. Thus, it is important to examine the spread of the virus and propose optimal control strategies by means of deterministic mathematical modeling. Second, the existence of optimal control is established analytically by the use of optimal control theory. Finally, numerical simulations were carried out, and it suggests that antibody and Wolbachia for the infected has a positive impact to fight the disease.
968
77853
On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart
Abstract:
In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect thereby improving the quality of the product. When a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study shows that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.
967
77683
Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model
Abstract:
The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.
966
77631
Using Convergent and Divergent Thinking in Creative Problem Solving in Mathematics
Abstract:
This paper aims to find out how students using convergent and divergent thinking in creative problem solving to solve mathematical problems creatively. Eight engineering undergraduates in a local university took part in this study. They were divided into two groups. They solved the mathematical problems with the use of creative problem solving skills. Their solutions were collected and analyzed to reveal all the processes of problem solving, namely: problem definition, ideas generation, ideas evaluation, ideas judgment, and solution implementation. The result showed that the students were able to solve the mathematical problem with the use of creative problem solving skills.
965
77566
Topological Language for Classifying Linear Chord Diagrams via Intersection Graphs
Abstract:
Chord diagrams occur in mathematics, from the study of RNA to knot theory. They are widely used in theory of knots and links for studying the finite type invariants, whereas in molecular biology one important motivation to study chord diagrams is to deal with the problem of RNA structure prediction. An RNA molecule is a linear polymer, referred to as the backbone, that consists of four types of nucleotides. Each nucleotide is represented by a point, whereas each chord of the diagram stands for one interaction for Watson-Crick base pairs between two nonconsecutive nucleotides. A chord diagram is an oriented circle with a set of n pairs of distinct points, considered up to orientation preserving diffeomorphisms of the circle. A linear chord diagram (LCD) is a special kind of graph obtained cutting the oriented circle of a chord diagram. It consists of a line segment, called its backbone, to which are attached a number of chords with distinct endpoints. There is a natural fattening on any linear chord diagram; the backbone lies on the real axis, while all the chords are in the upper half-plane. Each linear chord diagram has a natural genus of its associated surface. To each chord diagram and linear chord diagram, it is possible to associate the intersection graph. It consists of a graph whose vertices correspond to the chords of the diagram, whereas the chord intersections are represented by a connection between the vertices. Such intersection graph carries a lot of information about the diagram. Our goal is to define an LCD equivalence class in terms of identity of intersection graphs, from which many chord diagram invariants depend. For studying these invariants, we introduce a new representation of Linear Chord Diagrams based on a set of appropriate topological operators that permits to model LCD in terms of the relations among chords. Such set is composed of: crossing, nesting, and concatenations. The crossing operator is able to generate the whole space of linear chord diagrams, and a multiple context free grammar able to uniquely generate each LDC starting from a linear chord diagram adding a chord for each production of the grammar is defined. In other words, it allows to associate a unique algebraic term to each linear chord diagram, while the remaining operators allow to rewrite the term throughout a set of appropriate rewriting rules. Such rules define an LCD equivalence class in terms of the identity of intersection graphs. Starting from a modelled RNA molecule and the linear chord, some authors proposed a topological classification and folding. Our LCD equivalence class could contribute to the RNA folding problem leading to the definition of an algorithm that calculates the free energy of the molecule more accurately respect to the existing ones. Such LCD equivalence class could be useful to obtain a more accurate estimate of link between the crossing number and the topological genus and to study the relation among other invariants.
964
77503
Study and Analysis of a Susceptible Infective Susceptible Mathematical Model with Density Dependent Migration
Abstract:
In this paper, a susceptible infective susceptible mathematical model is proposed and analyzed where the migration of human population is given by migration function. It is assumed that the disease is transmitted by direct contact of susceptible and infective populations with constant contact rate. The equilibria and their stability are studied by using the stability theory of ordinary differential equations and computer simulation. The model analysis shows that the spread of infectious disease increases when human population immigration increases in the habitat but it decreases if emigration increases.
963
77445
A Study of Non Linear Partial Differential Equation with Random Initial Condition
Authors:
Abstract:
In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.
962
77368
Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method
Abstract:
In this paper, one-dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0,1] × [0,T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in the time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in the space domain. For a test problem, numerical results are compared with the analytical ones for different values of the parameter.
961
77208
Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe
Abstract:
Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.
960
76998
A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion
Abstract:
In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.
959
76873
Wavelet Method for Numerical Solution of Fourth Order Wave Equation
Abstract:
In this paper, a highly accurate numerical method for the solution of one-dimensional fourth-order wave equation is derived. This hyperbolic problem is solved by using semi-discrete approximations. The space direction is discretized by Wavelet-Galerkin Method and the time variable is discretized by using Newmark schemes. The numerical results show that this method gives high favourable accuracy while compared to the exact solution.
958
76821
Mathematical Analysis of Simple Supported Euler-Bernoulli Beam on a Variable Elastic Foundation under a Partially Distributed Moving Load
Abstract:
The dynamic responses of an elastically supported Euler- Bernoulli beam on variable elastic foundation under partially distributed moving loads were investigated. The governing equation is fourth order partial differential equation, which was reduced to second order ordinary differential equation by using the analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). The numerical analysis shows that the response amplitude of the moving mass and moving force for variable pre-stressed increase as mass of the load M increases. It was found that the response displacement of the beam decreases as the value of the elastic foundation K increases. Also, the response displacement of the beam decreases as the value of the pre-stressed N increase. Comparison of moving mass and moving force shown that moving mass is greater than that of moving force.
957
76818
Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization
Abstract:
In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.
956
76794
Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures
Abstract:
Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.
955
76784
On the Inequality between Queue Length and Virtual Waiting Time in Open Queueing Networks under Conditions of Heavy Traffic
Abstract:
The paper is devoted to the analysis of queueing systems in the context of the network and communications theory. We investigate the inequality in an open queueing network and its applications to the theorems in heavy traffic conditions (fluid approximation, functional limit theorem, and law of the iterated logarithm) for a queue of customers in an open queueing network.
954
76734
Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies
Abstract:
Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.
953
76659
Time Series Modelling and Predict of River Runoff Case Study: Karkheh River at Iran
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series Modelling allows runoff data analysis and can be used as forecasting tool. In the paper, attempt is made to model river runoff data and predict the future behavioral pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R²) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh river runoff at Iran.
952
76600
A Fundamental Functional Equation for Lie Algebras
Authors:
Abstract:
Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?
951
76447
Random Common Fixed Point Theorem for Contractive Mappings
Abstract:
Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In this direction a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in Polish spaces using Random Common Fixed Point Theorem For Generalized Weakly Contractions.
950
76381
Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus
Authors:
Abstract:
The study of Liouville-type problems in Differential Geometry is to discover constancy properties for maps between Riemannian manifolds. Existence of constancy properties is determined by geometric structures on manifolds and energy growth for maps. In this article, we focus on solving Liouville-type problems in Calculus where manifolds are restricted with the real number systems and maps become functions. Calculus skills such as Holder Inequality and Tests for Series will be used to evaluate limits and integrations for function energy in calculation. Liouville-type result of vanishing properties for functions with appropriate energy growth is obtained. The original work in our research findings is to extend the q-energy growth from finite Lᑫ space to infinite non-Lᑫ space in the context of p-balanced energy growth where q=p=2. An algorithm and energy estimation techniques for functions in this article can be generalized as a successfully computational method to apply the technique of p-balanced energy growth for maps between manifolds as an extension of q-energy from finite to infinite.