Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Abstract Count: 49756

Mathematical and Computational Sciences

892
81250
Identification of Shocks from Unconventional Monetary Policy Measures
Abstract:
After several prominent central banks including European Central Bank (ECB), Federal Reserve System (Fed), Bank of Japan and Bank of England employed unconventional monetary policies in the aftermath of the financial crisis of 2008-2009 the problem of identification of the effects from such policies became of great interest. One of the main difficulties in identification of shocks from unconventional monetary policy measures in structural VAR analysis is that they often are anticipated, which leads to a non-fundamental MA representation of the VAR model. Moreover, the unconventional monetary policy actions may indirectly transmit to markets information about the future stance of the interest rate, which raises a question of the plausibility of the assumption of orthogonality between shocks from unconventional and conventional policy measures. This paper offers a method of identification that takes into account the abovementioned issues. The author uses factor-augmented VARs to increase the information set and identification through heteroskedasticity of error terms and rank restrictions on the errors’ second moments’ matrix to deal with the cross-correlation of the structural shocks.
Digital Article Identifier (DAI):
891
80719
An Iterative Family for Solution of System of Nonlinear Equations
Authors:
Abstract:
This paper presents a family of iterative scheme for solving nonlinear systems of equations which have wide application in sciences and engineering. The proposed iterative family is based upon some parameters which generates many different iterative schemes. This family is completely derivative free and uses first of divided difference operator. Moreover some numerical experiments are performed and compared with existing methods. Analysis of convergence shows that the presented family has fourth-order of convergence. The dynamical behaviour of proposed family and local convergence have also been discussed. The numerical performance and convergence region comparison demonstrates that proposed family is efficient.
Digital Article Identifier (DAI):
890
79650
[Keynote Talk]: Existence of Random Fixed Point Theorem for Contractive Mappings
Abstract:
Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in polish spaces using Random Common Fixed Point Theorem for Generalized Weakly Contractions.
Digital Article Identifier (DAI):
889
79636
Comparative Study of Estimators of Population Means in Two Phase Sampling in the Presence of Non-Response
Abstract:
A comparative study of estimators of population means in two phase sampling in the presence of non-response when Unknown population means of the auxiliary variable(s) and incomplete information of study variable y as well as of auxiliary variable(s) is made. Three real data sets of University students, hospital and unemployment are used for comparison of all the available techniques in two phase sampling in the presence of non-response with the newly generalized ratio estimators.
Digital Article Identifier (DAI):
888
78854
Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Non-N Material Using Lubrication Approximation Theory
Abstract:
The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders; a term derived from kylindros the Greek word for cylinder. It infects the finishing process used on cloth, paper, textiles, leather, cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.
Digital Article Identifier (DAI):
887
78434
Theorem on Inconsistency of The Classical Logic
Abstract:
This abstract concerns an extremely fundamental issue. Namely, the fundamental problem of science is the issue of consistency. In this abstract, we present the theorem saying that the classical calculus of quantifiers is inconsistent in the traditional sense. At the beginning, we introduce a notation, and later we remind the definition of the consistency in the traditional sense. S1 is the set of all well-formed formulas in the calculus of quantifiers. RS1 denotes the set of all rules over the set S1. Cn(R, X) is the set of all formulas standardly provable from X by rules R, where R is a subset of RS1, and X is a subset of S1. The couple < R,X > is called a system, whenever R is a subset of RS1, and X is a subset of S1. Definition: The system < R,X > is consistent in the traditional sense if there does not exist any formula from the set S1, such that this formula and its negation are provable from X, by using rules from R. Finally, < R0+, L2 > denotes the classical calculus of quantifiers, where R0+ consists of Modus Ponens and the generalization rule. L2 is the set of all formulas valid in the classical calculus of quantifiers. The Main Result: The system < R0+, L2 > is inconsistent in the traditional sense.
Digital Article Identifier (DAI):
886
78296
Total Controllability of the Second Order Nonlinear Differential Equation with Delay and Non-Instantaneous Impulses
Abstract:
A stronger concept of exact controllability which is called Total Controllability is introduced in this manuscript. Sufficient conditions have been established for the total controllability of a control problem, governed by second order nonlinear differential equation with delay and non-instantaneous impulses in a Banach space X. The results are obtained using the strongly continuous cosine family and Banach fixed point theorem. Also, the total controllability of an integrodifferential problem is investigated. At the end, some numerical examples are provided to illustrate the analytical findings.
Digital Article Identifier (DAI):
885
77919
Generalized Rough Sets Applied to Graphs Related to Urban Problems
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, &amp; c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.
Digital Article Identifier (DAI):
884
77683
Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model
Abstract:
The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.
Digital Article Identifier (DAI):
883
77368
[Keynote Talk]: Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method
Abstract:
In this paper, one-dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0,1] × [0,T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in the time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in the space domain. For a test problem, numerical results are compared with the analytical ones for different values of the parameter.
Digital Article Identifier (DAI):
882
76821
Mathematical Analysis of Simple Supported Euler-Bernoulli Beam on a Variable Elastic Foundation under a Partially Distributed Moving Load
Abstract:
The dynamic responses of an elastically supported Euler- Bernoulli beam on variable elastic foundation under partially distributed moving loads were investigated. The governing equation is fourth order partial differential equation, which was reduced to second order ordinary differential equation by using the analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). The numerical analysis shows that the response amplitude of the moving mass and moving force for variable pre-stressed increase as mass of the load M increases. It was found that the response displacement of the beam decreases as the value of the elastic foundation K increases. Also, the response displacement of the beam decreases as the value of the pre-stressed N increase. Comparison of moving mass and moving force shown that moving mass is greater than that of moving force.
Digital Article Identifier (DAI):
881
76818
Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization
Abstract:
In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.
Digital Article Identifier (DAI):
880
76784
On the Inequality between Queue Length and Virtual Waiting Time in Open Queueing Networks under Conditions of Heavy Traffic
Abstract:
The paper is devoted to the analysis of queueing systems in the context of the network and communications theory. We investigate the inequality in an open queueing network and its applications to the theorems in heavy traffic conditions (fluid approximation, functional limit theorem, and law of the iterated logarithm) for a queue of customers in an open queueing network.
Digital Article Identifier (DAI):
879
76734
Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies
Abstract:
Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.
Digital Article Identifier (DAI):
878
75349
Generalized π-Armendariz Authentication Cryptosystem
Abstract:
Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.
Digital Article Identifier (DAI):
877
75328
Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.
Digital Article Identifier (DAI):
876
75290
Determining the Causality Variables in Female Genital Mutilation: A Factor Screening Approach
Abstract:
Female Genital Mutilation (FGM) is made up of three types namely: Clitoridectomy, Excision and Infibulation. In this study, we examine the factors responsible for FGM in order to identify the causality variables in a logistic regression approach. From the result of the survey conducted by the Public Health Division, Nigeria Institute of Medical Research, Yaba, Lagos State, the tau statistic, τ was used to screen 9 factors that causes FGM in order to select few of the predictors before multiple regression equation is obtained. The need for this may be that the sample size may not be able to sustain having a regression with all the predictors or to avoid multi-collinearity. A total of 300 respondents, comprising 150 adult males and 150 adult females were selected for the household survey based on the multi-stage sampling procedure. The tau statistic,
Digital Article Identifier (DAI):
875
75134
Hamiltonian Paths and Cycles Passing through Prescribed Edges in the Balanced Hypercubes
Authors:
Abstract:
The n-dimensional balanced hypercube BHn (n ≥ 1) has been proved to be a bipartite graph. Let P be a set of edges whose induced subgraph consists of pairwise vertex-disjoint paths. For any two vertices u, v from different partite sets of V (BHn). In this paper, we prove that if |P| ≤ 2n − 2 and the subgraph induced by P has neither u nor v as internal vertices, or both of u and v as end-vertices, then BHn contains a Hamiltonian path joining u and v passing through P. As a corollary, if |P| ≤ 2n−1, then the BHn contains a Hamiltonian cycle passing through P.
Digital Article Identifier (DAI):
874
75110
Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with &plusmn;2 standard prediction errors) is very feasible since it possesses good convergence properties.
Digital Article Identifier (DAI):
873
74758
Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters
Abstract:
Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time.
Digital Article Identifier (DAI):
872
74744
Mathematics Model Approaching: Parameter Estimation of Transmission Dynamics of HIV and AIDS in Indonesia
Abstract:
Acquired Immunodeficiency Syndrome (AIDS) is one of the world's deadliest diseases caused by the Human Immunodeficiency Virus (HIV) that infects white blood cells and cause a decline in the immune system. AIDS quickly became a world epidemic disease that affects almost all countries. Therefore, mathematical modeling approach to the spread of HIV and AIDS is needed to anticipate the spread of HIV and AIDS which are widespread. The purpose of this study is to determine the parameter estimation on mathematical models of HIV transmission and AIDS using cumulative data of people with HIV and AIDS each year in Indonesia. In this model, there are parameters of r ∈ [0,1) which is the effectiveness of the treatment in patients with HIV. If the value of r is close to 1, the number of people with HIV and AIDS will decline toward zero. The estimation results indicate when the value of r is close to unity, there will be a significant decline in HIV patients, whereas in AIDS patients constantly decreases towards zero.
Digital Article Identifier (DAI):
871
74739
A Mathematical Analysis of Behavioural Epidemiology: Drugs Users Transmission Dynamics Based on Level Education for Susceptible Population
Abstract:
The spread of drug users is one kind of behavioral epidemiology that becomes a threat to every country in the world. This problem caused various crisis simultaneously, including financial or economic crisis, social, health, until human crisis. Most drug users are teenagers at school age. A new deterministic model would be constructed to determine the dynamics of the spread of drug users by considering level of education in a susceptible population. Based on the analytical model, two equilibria points were obtained; there were E₀ (zero user) and E₁ (endemic equilibrium). Existence of equilibrium and local stability of equilibria depended on the Basic Reproduction Ratio (R₀). This parameter was defined as the expected rate of secondary prevalence and primary prevalence in virgin population along spreading primary prevalence. The zero-victim equilibrium would be locally asymptotically stable if R₀ < 1 while if R₀ > 1 the endemic equilibrium would be locally asymptotically stable. The result showed that R₀ was proportional to the rate of interaction of each susceptible population based on educational level with the users' population. It is concluded that there was a need to be given a control in interaction, so that drug users population could be minimized. Numerical simulations were also provided to support analytical results.
Digital Article Identifier (DAI):
870
74570
Flow and Heat Transfer Analysis of Copper-Water Nanofluid with Temperature Dependent Viscosity past a Riga Plate
Authors:
Abstract:
Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity, as well as the temperature of the nanofluid and, is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.
Digital Article Identifier (DAI):
869
74544
The Valuation of Employees Provident Fund on Long Term Care Cost among Elderly in Malaysia
Abstract:
Nowadays, financing long-term care for elderly people is a crucial issue, either towards the family members or the care institution. Corresponding with the growing number of ageing population in Malaysia, there’s a need of concern on the uncertaintiness of future family care and the need for long-term care services. Moreover, with the increasing cost of living, children feels the urge of needing to work and receive a fixed monthly income that results to sending their elderly parents to care institutions. Currently, in Malaysia, the rates for private nursing homes can amount up to RM 4,000 per month excluding medical treatments and other recurring expenses. These costs are expected to be paid using their Employees Provident Fund (EPF) savings that they accumulate during their working years, especially for those working under private sectors. Hence, this study identifies the adequacy of EPF in funding the cost of long-term care service during old age. This study used a hypothetical simulation model to simulate different scenarios. The findings of this study could be used for individuals to prepare on the importance of planning for retirement, especially with the increasing cost of long-term care services.
Digital Article Identifier (DAI):
868
74530
Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip
Abstract:
The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles.
Digital Article Identifier (DAI):
867
74529
Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations
Abstract:
A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates the effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the Department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.
Digital Article Identifier (DAI):
866
74331
A Filtering Algorithm for a Nonlinear State-Space Model
Abstract:
Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.
Digital Article Identifier (DAI):
865
74305
A Study of Algebraic Structure Involving Banach Space through Q-Analogue
Abstract:
The aim of the present paper is to study the Banach Space and Combinatorial Algebraic Structure of R. It is further aimed to study algebraic structure of set of all q-extension of classical formula and function for 0 < q < 1.
Digital Article Identifier (DAI):
864
74244
Deep Learning for Recommender System: Principles, Methods and Evaluation
Abstract:
Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.
Digital Article Identifier (DAI):
863
74099
Study on a Family of Optimal Fourth-Order Multiple-Root Solver
Abstract:
In this paper,we develop the complex dynamics of a family of optimal fourth-order multiple-root solvers and plot their basins of attraction. Mobius conjugacy maps and extraneous fixed points applied to a prototype quadratic polynomial raised to the power of the known integer multiplicity m are investigated. A 300 x 300 uniform grid centered at the origin covering 3 x 3 square region is chosen to visualize the initial values on each basin of attraction in accordance with a coloring scheme based on their dynamical behavior. The illustrative basins of attractions applied to various test polynomials and the corresponding statistical data for convergence are shown to confirm the theoretical convergence.
Digital Article Identifier (DAI):