Open Science Research Excellence

A Majeed

Publications

3

Publications

3
4235
In vitro Anti-tubercular Screening of Newly Synthesized Benzimidazole Derivatives
Abstract:

A series of 1-(1H-benzimidazol-2-yl)-3-(substituted phenyl)-2-propen-1-one were allowed to react with hydrazine hydrate and phenyl hydrazine in submitted reactions to get pyrazoline and phenyl pyrazoline derivatives. All the compounds entered for screening at the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) for their in vitro antibacterial activity against Mycobacterium tuberculosis H37Rv strain (ATCC 27294) using Microplate Alamar Blue Assay (MABA) susceptibility test. The results expressed as MIC (minimum inhibitory concentration) in μg/mL. Among the fifteen compounds, eight compounds were found to have MIC values less than 10 μg/mL. These were subjected for cytotoxicity assay in VERO cells to determine CC50 (cytotoxic concentration 50%) values and finally SI (Selectivity Index) were calculated. Compound (XV) 2-[5-(4- fluorophenyl)-1-phenyl-4,5-dihydro-1H-3-pyrazolyl]-1Hbenzimidazole was considered the best candidate of the series that could be a good starting point to develop new lead compounds in the fight against tuberculosis.

Keywords:
anti-tubercular activity, benzimidazole, pyrazoline.
2
9998461
Functionalized Nanoparticles as Sorbents for Removal of Toxic Species
Abstract:

Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity.

Keywords:
Mercury, lead, thiol functionalization, ZnO NPs.
1
10008584
Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords:
Artificial neural network, load estimation, regional survey, rural electrification.